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MULTISOLITON KP-2 SOLUTIONS AND
DEGENERATE M-CURVES

S. Abenda1, P.G. Grinevich2

1Dipartimento di Matematica and Alma Mater Research Center on
Applied Mathematics, Università di Bologna, Italy,

INFN, sez. di Bologna, Italy;
2Steklov Mathematical Institute, Moscow, Russia,
L.D. Landau Institute for Theoretical Physics,

Chernogolovka, Russia,
Lomonosov Moscow State University, Russia.; grinev@mi-ras.ru

Multiline solitons of the KP-2 equations can be constructed using
the Darboux transformations. But they also can be obtained as degen-
eration of the finite-gap solutions. If one wants to obtain physically
relevant regular real-valued solutions it is necessary to use totally-
positive Grassmannians in the Darboux transformation and M-curves
in the finite-gap approach. We construct a bridge between these two
approaches.

POLYNOMIAL INTEGRALS OF GEODESIC FLOWS
AND THE GENERALIZED HODOGRAPH METHOD

S.V. Agapov

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia;
agapov.sergey.v@gmail.com

We consider integrable geodesic flows on 2-surfaces admitting an
additional polynomial in momenta first integral. Generally speaking,
the search for such integrals leads to certain complicated quasi-linear
systems of PDEs. As proved in [1], typically these systems turned
out to be semi-Hamiltonian ([2]). In particular, this allows to apply
the generalized hodograph method ([2]) to construct solutions to such
systems. However, the direct implementation of this method turned
out to be an implicit and very complicated procedure ([3], [4], see also
[5]).

We present an explicit algorithm based on the generalized hodo-
graph method which allows one to construct many particular solutions

13
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to these systems. Explicit examples of metrics and first integrals of
high degrees are also provided.

REFERENCES

1. Bialy M. L., Mironov A.E., “Rich quasi-linear system for integrable geodesic
flows on 2-torus,” Disc. Cont. Dyn. Syst. - A, 29, No. 1, 81–90 (2011).

2. Tsarev S. P., “The geometry of Hamiltonian systems of hydrodynamic type.
The generalized hodograph method,” Math. USSR-Izv., 37, 397–419 (1991).

3. Pavlov M.V., Tsarev S. P., “On local description of two-dimensional geodesic
flows with a polynomial first integral,” J. Phys. A — Math. Theor., 49, No.
17, 175201 (2016).

4. Manno G., Pavlov M.V., “Hydrodynamic-type systems describing 2-
dimensional polynomially integrable geodesic flows,” Journ. Geom. Phys.,
113, 197–205 (2017).

5. Abdikalikova G., Mironov A.E., “On exact solutions of a system of quasilin-
ear equations describing integrable geodesic flows on a surface,” Sib. Electr.
Math. Reports, 16, 949–954 (2019). [Russian]

TWO-CLUSTER SYNCHRONISATION IN A FULLY
COUPLED NETWORK OF MACKEY–GLASS

GENERATORS

V.V. Alekseev

Centre of Integrable Systems, Yaroslavl State University,
Yaroslavl, Russia; v.alekseev1@uniyar.ac.ru

The Mackey –Glass generator is an electric generator whose oper-
ation is described by the Mackey –Glass equation [1]

dV

dt
= −bV +

acV (t− τ)

1 + (cV (t− τ))γ

Here, V (t) is the voltage function, a > 0 is the saturation level of
nonlinearity, b > 0 is the RC constant, τ > 0 is the time delay, the
parameter γ > 0 determines the shape of the nonlinear function, and
c > 0 is the feedback strength.

Fix m,n ∈ N. Consider a fully coupled network of N = m + n
Mackey-Glass generators, i. e. a network, where each generator is
coupled to each. This network described by the equation

dVj
dt

= −bVj+
ac
(
Vj(t− τ) + δ

∑N
k=1,k ̸=j Vk(t)

)
1 +

(
c
(
Vj(t− τ) + δ

∑N
k=1,k ̸=j Vk(t)

))γ , j = 1, 2, . . . , N,

14



where the parameter δ > 1 controlling the strength of the coupling.
After substitutions Vj = c−1uj(

t
τ ), β = bτ , α = acτ , t 7→ t

τ , we
obtain

u̇j = −βuj +
α
(
uj(t− 1) + δ

∑N
k=1,k ̸=j uk(t)

)
1 +

(
uj(t− 1) + δ

∑N
k=1,k ̸=j uk(t)

)γ , j = 1, 2, . . . , N.

(1)
Here α, β > 0.

Let
F (x) =

x

1 + xγ
. (2)

Considering (2), the system (1) takes the form

u̇j = −βuj + αF

uj(t− 1) + δ
N∑

k=1,k ̸=j

uk(t)

 , j = 1, . . . , N.

We will look for two-cluster synchronization modes, i.e. periodic
modes in which m generators are described by the function u(t), and
the remaining n generators by the function v(t).

In this consideration, the system (1) takes the form{
u̇ = −βu+ αF

(
u(t− 1) + δ(m− 1)u+ δnv

)
,

v̇ = −βv + αF
(
v(t− 1) + δmu+ δ(n− 1)v

)
.

(3)

In this work, we seek a stable periodic solution of the system (3).
This work was supported by the Russian Science Foundation (project No. 21-

71-30011). https://rscf.ru/en/project/21-71-30011/.

REFERENCES

1. Mackey M.C., Glass L. “Oscillation and chaos in physiological control sys-
tems”, Science, 197, 287–289 (1977).
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NOTES ON THE APPROACH, METHODS AND
RESULTS OF A QUALITATIVE RESEARCH FOR SOME

FAMILIES OF POLYNOMIAL DYNAMIC SYSTEMS

I.A. Andreeva 1, T.O. Efimova2, N.V. Kondratieva3

1Peter the Great St.Petersburg Polytechnic University, St.
Petersburg, Russia; irandr@inbox.ru

2Peter the Great St.Petersburg Polytechnic University, St.
Petersburg, Russia; substress@mail.ru

3Peter the Great St.Petersburg Polytechnic University, St.
Petersburg, Russia; knat0202@mail.ru

A key role in multiple branches of contemporary mathematical
modeling belongs to dynamic systems. The examples of such an ap-
proach can be found in various directions of science and engineering,
such as mathematical models of astrophysical, geophysical and (espe-
cially) atmospheric processes; the wide spectrum of tasks of engineer-
ing, for example, the problems of seismic stability; basic analysis of
computing and producing systems; studies in sociological and ecolog-
ical processes.

A proper dynamic system serves as a mathematical apparatus dur-
ing a research of some phenomena and conditions, which permit to
ignore any statistical events. The point is to study curves, defined by
differential equations of a taken dynamic system.

Conducting such an analysis, firstly we subdivide the phase space
into separate trajectories.

Next, we investigate a limit behavior of those trajectories with the
aim to find and to construct the classification of possible equilibrium
positions. Also, at this research stage we find out possible sinks and
sources of the phase flow. After all these steps, we construct a global
set of possible phase portraits, which a given differential dynamic sys-
tem may have, and this mean that we can describe and predict the
development of a physical process under investigation.

Polynomial dynamic systems play especially important role as prac-
tical mathematical models, and it is a reason for their preferential
in-depth study.

Our talk describes the mathematical tasks, special methodology,
progress and results of the thorough original study of a wide hierarchi-

16



cal family of differential polynomial dynamic systems with reciprocal
right parts, having broad application prospects.

The considered family of cubic systems have the form

dx

dt
= p0x

3 + p1x
2y + p2xy

2 + p3y
3 ≡ X(x, y),

dy

dt
= ax2 + bxy + cy2 ≡ Y (x, y),

(1)

where a, b, c, p0, . . . , p3 — are the real parameters, and for them :
c p3 ̸= 0, while X, Y — are reciprocal polynomials.

The goal of our study is to reveal and depict the whole set of
topologically different phase portraits in the enclosed Poincare disk
Ω, which can be realized for the (having some complicated hierarchy
of multiple subfamilies) dynamic systems of the family (1), and find
conditions of their existence.

Using the classical approach of the qualitative theory of ODEs,
i.e. the first and the second Poincare transformations: the central
mapping at first and the orthogonal mapping secondly, together with
several new notations and methods, especially developed for the aims
of the present investigation, we subsequently study by a common plan
all the existing subfamilies of the family (1), which appeared to belong
to several hierarchical levels. The actual number of those levels varies
from 3 to 4 for separate edges of the hierarchy graph.

As a result of the conducted work more than 250 topologically
different phase portraits were depicted in the Poincare disk. Criteria
of their existence were given. There was proved the total absence
of limit cycles for the whole global (1)-family of polynomial dynamic
systems.

REFERENCES

1. Andreev A. F., Introduction to the Local Qualitative Theory of Differential
Equations, St.Petersburg University Publ., St. Petersburg (2003).

2. Andreev A. F., Andreeva I. A., Detchenya L.V., Makovetskaya T.V.,
Sadovskii A. P., “Nilpotent Centers of Cubic Systems,” Differential Equa-
tions, 53, No. 8, 975–980 (2017).

3. Andreeva I. A., Efimova T.O., “On the Qualitative Study of Some Fam-
ily of Cubic Dynamic Systems,” Mathematical Methods in Technology and
Technics, 6, 12–15 (2021).

4. Andreeva I. A., Efimova T.O., “On the Qualitative Study of Phase Por-
traits for Some Categories of Polynomial Dynamic Systems,” in: Studies
of Systems, Decision and Control. Cyber-Physical Systems: Modeling and
Industrial Application. Springer, 2022, pp. 39–50.
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6. Andreeva I. A. “Qualitative Investigation of Some Hierarchical Family of Cu-
bic Dynamic Systems,” Lobachevskii Journal of Mathematics, 45, No. 1,
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MATHEMATICAL MODELING OF A MOVING FIRE
FRONT IN SPREADING FOREST FIRES

R. L. Argun1, N. T. Levashova2

1Moscow State University, Moscow, Russia;
argun.rl14@physics.msu.ru

2Moscow State University, Moscow, Russia;
levashovant@physics.msu.ru

This work is devoted to the study of mathematical models of land-
scape forest fires and numerical modeling of the movement of the forest
fire front. The problems of modeling forest fires were previously con-
sidered, for example, in studies [1-3]. In our work, the main object of
study is the problem of determining the position of the moving front
of a forest fire. It is known that as a result of forest fires, not all forest
biomass burns, but only a part of it [4]. Knowing information about
the movement of the fire front, it is possible not only to predict the
further direction of fire spread, but also to estimate the damage (the
proportion of burnt biomass) caused to the forest in the area where
the forest fire has already passed [5].

The forest fire model considered in this paper consists of two equa-
tions: an advection-diffusion type equation for temperature and a
reaction-diffusion type equation for biomass. The right-hand side of
the equations under study may contain cubic nonlinearity or discon-
tinuity. The visible front of forest fire depends on the size of the
observation area. In the case of a relatively small observation altitude
(e.g., from an airplane or unmanned aerial vehicle), the visible front
is an open curve. We will call such a forest fire problem formula-
tion a local formulation. In the case of forest fire observation from a
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high altitude (e.g., using satellite observation data), the visible front
of fire will be a closed curve, and the corresponding problem will be
considered in a global formulation.

A numerical simulation of the forest fire front movement was per-
formed using finite-difference methods. Examples are given for differ-
ent environmental parameters and wind directions, and a number of
a posteriori accuracy estimates are made based on numerical experi-
ments for one of the problems from the class under consideration.

The work was supported by the Foundation for the Development of Theoretical

Physics and Mathematics “BASIS”.
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LINEARIZATION OF DELAY DIFFERENTIAL
EQUATIONS WITH DELAYED DISCONTINUITIES

D.D. Bain

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
danila.bain@yandex.com

Consider the differential equation of the form

ẋ = f(t, x, xτ) =

{
f+(t, x, xτ), b(xτ) > 0,

f−(t, x, xτ), b(xτ) < 0,
(1)

where x = x(t) ∈ Rn; xτ = xτ(t) = x(t− τ(t)); time-dependant delay
τ(t) > 0 is C1, bounded and non-vanishing; b : Rn → R is a scalar
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C1-function; functions f± are C1 on the sets R × Rn × {xτ ∈ Rn :
±b(xτ) ⩾ 0} respectively.

Since generally the right hand side of (1) is discontinuous, instead
of classical solutions we consider Carathéodory solutions of (1).

Variational equation describes the evolution of infinitesimal per-
turbations of initial conditions over time, playing extremely important
role in study of dynamical systems with regard to stability (first Lya-
punov’s method), hyperbolicity, and Lyapunov exponents, the theory
of which is well developed for continuous systems. Systems of the type
(1) are not uncommon, they appear as limit objects for systems with
large parameter, in relay control systems, or by themself as models
for real-life phenomena. Hence, generalizing existing tools for study
of dynamical systems of the type (1) is very important.

Definition 1. The solution x(t) of (1) is called non-degenerate
if it’s domain is [t0 − τ ,+∞) for some t0 and

1. The set Zx =
{
T : b(xτ(T )) = 0

}
consists of isolated points.

In other words, x(t) is not a sliding mode.

2. For all T ∈ Zx, function t 7→ b(xτ(t)) is differentiable at t =
T and it’s derivative at t = T is not zero. In other words,
the retarded solution xτ(t) crosses discontinuity surface b = 0
smoothly and transversally.

Definition 2. Let x(t) be a non-degenerate solution of (1) de-
fined on [t0 − τ ,+∞). Consider an initial value problem

ẇ = ∂xf · w + ∂xτ
f · wτ +

∑
T∈Zx

δ(t− T )
(f+ − f−)b

′(xτ)wτ

|(1− τ ′)b′(xτ)ẋτ |
,

w(t) = ψ(t), t ∈ [t0 − τ , t0]

(2)

where f , ∂xf and ∂xτ
f are evaluated at (t, x, xτ); δ is Dirac delta

function; ẋτ =
dx

dt
(t − τ(t)). The differential equation in (2) is called

a variational equation (or linearization) for equation (1) at it’s
solution x(t).

Theorem 1. Let x(t) = x(t, φ) and y(t) = x(t, φ + εψ) be the
solutions of (1) satisfying initial conditions

x(t) = φ(t), y(t) = φ(t) + εψ(t)

for t ∈ [t0 − τ , t0] respectively, ψ being the infinitesimal perturbation
of initial conditions as ε → 0. Suppose that x(t) is non-degenerate
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solution. Let εwε = y(t)− x(t) be the evolution of εψ-perturbation of
initial conditions, then wε → w as ε→ 0 pointwise for any t ̸∈ Zx and
uniformly on any bounded interval minus any open set containing Zx.

BIFURCATIONS OF SMALE HORSESHOES’ CHAINS
IN A DOUBLE-SCROLL ATTRACTOR

N.V. Barabash1,2, V.N. Belykh1,2

1Volga state university of water transport, Nizhny Novgorod, Russia;
barabash@itmm.unn.ru

2Lobachevsky state university, Nizhny Novgorod, Russia;

In this talk we consider bifurcations of piecewise-smooth system A
composed from three linear subsystems A0, Al and Ar :

A0 :
ẋ = x,
ẏ = −νy + ωz,
ż = −ωy − νz,

for (x, y, z) ∈ G0,

Al :
ẋ = −α(x+ h)− Ω(z + 1),
ẏ = −βy,
ż = Ω(x+ h)− α(z + 1),

for (x, y, z) ∈ Gl,

Ar :
ẋ = −α(x− h)− Ω(z − 1),
ẏ = −βy,
ż = Ω(x− h)− α(z − 1),

for (x, y, z) ∈ Gr,

where h, α, β, ν, ω and Ω are positive parameters, and regions G0, Gl

and Gr are defined as follows

G0 : |x| < h, (y2 + z2 ≤ r2) ∩ (|z| < 1),
Gl : (z ≤ −signx, y ∈ R1) \G0,
Gr : (z ≥ −signx, y ∈ R1) \G0,

for some positive parameter r > 1.
This system was introduced in our recent paper [1] as a certain

dynamical system with a double homoclinic loop to saddle-focus al-
lowing its complete analytical study. For this system we analytically
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obtained Poincaré return map in explicit form and proved the exis-
tence of a double-scroll attractor. In order to get a complete descrip-
tion of the attractor structure we introduce so-called Smale horseshoe
chains, which made it possible to reveal the true complexity of the
double-scroll attractor.

It this talk, we continue to use the analytical advantages of system
A and consider the issue of bifurcations of invariant sets, belonging to
the attractor and defined by Smale horseshoes chains. In particular,
we show that the infinitesimal increase of bifurcation parameter µ
from zero leads to birth and disappear of countable set of double-scroll
attractors and spiral attractors.

The authors were supported by the Russian Scientific Foundation (project no. 24-

21-00420).
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ON TRANSCENDENTAL CASES IN THE PROBLEM OF
ORBITAL STABILITY OF PERIODIC MOTIONS OF A

HEAVY RIGID BODY

B. S. Bardin

Moscow Aviation Institute (National Research University),
Moscow, Russia; bsbardin@yandex.ru

We deal with the problem of orbital stability of the pendulum-like
oscillations of a heavy rigid body with a fixed point. It is supposed
that the mass geometry of the body corresponds to the Hess case
[1]. In this case the system of perturbed motion equations has three
parameters. It was shown that the first order resonance takes place
for all values of parameters in this system [2], i.e. the characteristic
equation of the linearized system has double root, which is equal to
1. In such a resonant case the study of the linearized system is not
enough to obtain conclusions on orbital stability of the pendulum-like
oscillations.

In this work we write down the system of equations describing the
perturbed motion in a neighborhood of pendulum-like oscillations in
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a Hamiltonian form and perform rigorous nonlinear stability analysis.
We show that the orbital stability problem cannot be solved by means
of the study of a non-linear approximation of any finite order, i.e. we
show that the so-called transcendental situation [3] takes place in the
considered problem. In general position, when the monodromy ma-
trix is non-diagonalizable, by using the results of paper [4] we prove
the orbital instability of the pendulum-like oscillations. We also con-
sider the special case, when monodromy matrix can be brought into
a diagonal form and the pendulum-like oscillations are stable in the
linear approximation. This case takes place on a two-dimensional sur-
face in three-dimensional space of parameters. The calculations have
shown that on this surface the normal form of the Hamiltonian of the
perturbed motion does not includes terms of degree two and three.
By means of the method proposed in paper [4] we proved that in
such a special case the corresponding Hamiltonian system is unsta-
ble. Thus, in spite of the orbital stability in the linear approximation
the pendulum-like oscillations are orbitally unstable in the original
non-linear system.

This research was supported by the grant of the Russian Science Foundation

(project No. 24-11-00162) and was carried out at the Moscow Aviation Institute

(National Research University).
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STUDY OF MULTIDIMENSIONAL MAPS USING
ONE-DIMENSIONAL ENDOMORPHISMS:

SMALL PARAMETER APPROACH

V.N. Belykh

Volga state university of water transport;
Lobachevsky State University, Nizhny Novgorod, Russia;
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In recent paper [1] it had been proved that the bifurcation struc-
ture of a quadratic nonivertible map persists when the parameter in-
creases from zero and the map turns into an invertible multidimen-
sional Henon map. In this talk we discuss the similar problem for a
generalized map which combines the Henon type maps, the Poincare
return map for Shilnikov bifurcation of saddle-focus homoclinic orbit,
the Lurie discrete time system, etc. [2-6].

We have obtained the expected result about the persistence of peri-
odic orbits and their bifurcations when passing from a one-dimensional
endomorphism to the generalized map when a small parameter be-
comes non-zero.

We have revealed the precise mechanism of change of homoclinic
orbits and splitting of unstable manifolds as a result of the transition
of 1-D endomorphism to multidimensional map. Thereby we have
derived the reconstruction rules of nonwandering set of orbits and
bifurcations of the generalized map from those of 1-D endomorphism.

This work was supported by the Ministry of Science and Higher Education of

the Russian Federation under Project No. 0729-2020-0036.
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A NONSTANDARD BILLIARD PROBLEM
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Let (M, g) be a Riemannian manifold, Ω ⊂ M a domain with
smooth boundary Γ, and ϕ be a smooth function such that ϕ|Ω > 0,
ϕ|Γ = 0, and dϕ|Γ ̸= 0. We study the geodesic flow of the metric
G = g/ϕ in Ω. The G-distance from any point of Ω to Γ is finite,
so the geodesic flow is incomplete. Regularization of the flow in a
neighborhood of Γ establishes a natural reflection law from Γ. This
leads to a certain billiard-like problem in Ω. We obtain a normal
form for the regularized flow near Γ and for the corresponding billiard
map of T ∗Γ. This leads to a version of Lazutkin’s theorem [1] on the
existence of caustics for convex billiards. Our work was motivated by
the results of Dobrohotov and Nazaikinkii, see e.g. [2], on the quasi-
classical approximation for the wave equation utt = ∇ · (ϕ∇u) in Ω
degenerating on Γ. The talk is based on the paper [3].
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SOLVABILITY THEOREMS FOR THE LINEAR
NON-LOCAL PROBLEM FOR ABSTRACT PARABOLIC

EQUATIONS
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Consider a triple V ⊂ H ⊂ V ′ of separable Hilbert spaces, where
V ′ is the dual space of V and H is identified with its dual H ′. Both
embeddings are dense and continuous. Let a(u, v) be a sesquilinear
form defined on the space V and satisfying the estimates

|a(u, v)| ⩽ µ∥u∥V ∥v∥V , Re a(u, u) ⩾ α∥u∥2V , (1)

for all u, v ∈ V , where µ and α are positive constants. Obviously, the
form a(u, v) generates a bounded linear operator A : V → V ′ such
that a(u, v) = (Au, v) for all u, v ∈ V . This implies the estimate
∥A∥V→V ′ ⩽ µ. We denote by (z, v) the value of a functional z ∈ V ′ on
an element v ∈ V . Due to the identification H ≡ H ′, the expression
(z, v) coincides with the scalar product in H for z ∈ H [1].

In the space V ′ we consider the parabolic problem

u′(t) + Au(t) = f(t),

T∫
0

p(t)u′(t) dt = u . (2)

on the interval [0, T ]. In (2), the function t → f(t) ∈ V ′, the element
u and the function t → p(t) ∈ R1 are given. Here and below, all
derivatives are meant in the generalized sense.

We refer to the article [2] close in the subject area, where solvability
of an abstract parabolic problem with the operator A(t) dependent on
time and the periodic condition is studied. In [3] and [4], weak and
smooth solvability theorems of a parabolic equation with a weighted
integral condition are proved. In [5] the criterion of uniqueness of the
solution to a parabolic problem with a non-local condition is given
making use of the theory of eigenvalues.
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Let us give the theorem on the existence of a weak solution to the
problem (2).

Theorem 1. In the problem (2) assume that conditions (1) are
satisfied and the embedding V ⊂ H is compact. The function f ∈
L2(0, T ;H), the function p(t) is absolutely continuous and non-increa-
sing and takes positive values on the interval [0, T ]. Let u ∈ V . Then
problem (2) has a unique solution u(t) such that u ∈ L2(0, T ;V ) ∩
C([0, T ], H), u′ ∈ L2(0, T ;V

′). Moreover, the following estimate
holds

max
0⩽t⩽T

∥u(t)∥2H +

T∫
0

(
∥u(t)∥2V + ∥u′(t)∥2V ′

)
dt ⩽ C

(
∥u∥2V +

T∫
0

∥f(t)∥2H dt
)
.

In following theorems we obtained better smoothness of the solution
to (2) than in Theorem 1.

Theorem 2. Let the assumptions of Theorem 1 hold. In the prob-
lem (2) assume that the function f(t) belongs to the class L1(0, T ;H)

⋂
L2(0, T ;V

′), the derivative f ′ belongs to L2(0, T ;V
′) and Af ∈

L1(0, T ;H). Let f(0) ∈ H and u ∈ D(A) = {u ∈ V : Au ∈ H}. Then
the weak solution u(t) to the problem (2) possesses the additional
smoothness u′ ∈ L2(0, T ;V )

⋂
C([0, T ], H) and u′′ ∈ L2(0, T ;V

′).
Moreover, the following estimate holds

max
0⩽t⩽T

∥u′(t)∥2H +

T∫
0

(∥u′(t)∥2V + ∥u′′(t)∥2V ′) dt ⩽ K

{
∥Au∥2H +

( T∫
0

∥Af(t)∥H dt
)2
+

+

T∫
0

(∥f(t)∥2V ′ + ∥f ′(t)∥2V ′) dt+ ∥f(0)∥2H

}
.

We call the form a(u, v) Hermitian, if for all u, v ∈ V a(u, v) = a(v, u),
where the bar means complex conjugation.

Theorem 3. Let the assumptions of Theorem 1 hold. Let the form
a(u, v) be Hermitian. In the problem (2) assume that the function f(t)
belongs to the class L1(0, T ;V )

⋂
L2(0, T ;H) and the element u ∈ V .

Then the weak solution u(t) to the problem (2) belongs to C([0, T ], V )
and u′, Au ∈ L2(0, T ;H). Moreover, the following estimate holds

max
0⩽t⩽T

∥u(t)∥2V +

T∫
0

(
∥u′(t)∥2H + ∥Au(t)∥2H

)
dt ⩽

K
{
∥u∥2V +

( T∫
0

∥f(t)∥V dt
)2

+

T∫
0

∥f(t)∥2H dt
}
.
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DAMPING EFFECT OF CAPUTO FRACTIONAL TIME
DERIVATIVES IN NONLINEAR WAVE EQUATIONS
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In the past few decades, there has been an extraordinary number
of papers in the international literature on the application of fractional
calculus to find new solutions to a great many differential equations
with applications to practically every branch of science. There occurs,
however, an important discrepancy between the applications of ordi-
nary and fractional calculus in the case of conservative systems that
possess families of periodic solutions: When fractional time derivatives
of the Caputo type are employed, even though the system remains
conservative, all solutions are seen to dissipate to zero or a nontrivial
steady state, as soon as the order of the time derivative is less than
two [1]. In this talk, I will explore this phenomenon further in the case
of breather solutions of a Klein Gordon nonlinear wave equation [2].
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In 1974, S. P. Novikov discovered an algebro-geometrical method
for constructing periodic and quasi-periodic solutions of the KdV equa-
tion. He introduced the g-stationary equations of the KdV-hierarchy
(namely the Novikov’s g-equations) which correspond to integrable
polynomial dynamical systems in C3g with 2g polynomial integrals.

The talk is devoted to differential equations and dynamical sys-
tems, which are integrable in hyperelliptic sigma functions.

We will introduce systems of 2g-dimensional heat equations in a
nonholonomic frame which define this functions. The operators of such
system generate a polynomial Lie algebra with only three generators
for g > 1. We will construct an infinite-dimensional polynomial dy-
namical system that is universal for all polynomial dynamical systems
corresponding to the sequence of Novikov’s g-equations.
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POLYNOMIAL DYNAMICAL SYSTEMS
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HYPERELLIPTIC FUNCTIONS AND KORTEWEG–DE
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We will describe the correspondence of the universal bundle of
Jacobians of genus g hyperelliptic curves with the polynomial map

ρg : C3g → C2g

that expresses the 2g parameters of the hyperelliptic curve of genus g
as polynomials with rational coefficients in the generators of the field
of hyperelliptic functions. We will give the relation of this map to the
Korteweg–de Vries hierarchy following [1].

Our investigation of explicit formulas for differentiation of hyper-
elliptic functions, see [2], allowed us to obtain the polynomial dynam-
ical systems in C3g that correspond to differentiations of hyperelliptic
functions, see [3]. We will show explicit formulas for the polynomial
dynamical systems, their infinite-dimensional generalizations and the
connection to Novikov equations.
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LAGRANGIAN MULTIFORMS: A VARIATIONAL
FRAMEWORK FOR INTEGRABLE HIERARCHIES

Vincent Caudrelier

University of Leeds

After a short review of the notion of Lagrangian multiforms as
a variational framework for integrable hierarchies, I will present a
general construction for finite dimensional integrable hierarchies. It
relies on Semenov-Tian-Shanski’s concept of Lie dialgebra. The clas-
sical Yang-Baxter equation underlies important properties of our La-
grangian multiforms. Thus, it is cast as a pillar of a Lagrangian frame-
work, similar to its central role in the Hamiltonian framework. Ex-
amples of the construction will be given which provide Lagrangian
multiforms for various famous hierarchies: open Toda chain, (cyclo-
tomic) Gaudin model and periodic Toda chain. If time allows, I will
briefly mention how the same underlying algebraic structures allow
one to construct Lagrangian multiforms for integrable ultralocal field
theories in 1 + 1 dimensions.

This is based on joint works with Marta Dell’Atti, Anup Singh,
Matteo Stoppato and Benoit Vicedo, [1–3].
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NONCOMMUTATIVE SOLUTIONS OF LOCAL
TETRAHEDRON EQUATION

M.A. Chirkov

Centre of Integrable Systems of YarSU, Yaroslavl, Russia;
mikhlchirkov@gmail.com

This talk is related to n-simplex equations and local n-simplex
equations. They are generalization of well-known Yang-Baxter and
Zamolodchikov equations [3 – 5] (also Lax equation and local Yang–
Baxter equation for local equations), which have applications in many
fields of mathematics and physics, including statistical mechanics,
quantum field theory and integrable systems.

In this talk we are especially interested in n-simplex maps on non-
commutative division ring. Notable examples of division rings are a
noncommutative group and a ring of endomorphisms of a prime mod-
ule.

Let X be a set. Map S : (x, y, z, t) 7→ (u(x, y, z, t), v(x, y, z, t),
w(x, y, z, t), r(x, y, z, t)) is called 4-simplex map if it satifsfies 4-simplex
equation

S1234◦S1567◦S2589◦S368,10◦S479,10 = S479,10◦S368,10◦S2589◦S1567◦S1234.

Now, let L = L(x) be 3 × 3 matrix, which depends on variable
x ∈ X

L(x) =

a(x) b(x) c(x)
d(x) e(x) f(x)
k(x) l(x) m(x)


. Let L6

ijk(x), i, j, k = 1, . . . 6, i < j < k, — 6× 6 matrix extensions of
L(x).

We call this matrix equation

L6
123(u)L

6
145(v)L

6
246(w)L

6
356(r) = L6

356(t)L
6
246(z)L

6
145(y)L

6
123(x)

local tetrahedron equation. Solutions to this equation may generate
solutions to 4-simplex equation.

We would have two main contexts — X may be a field or a non-
commutative division ring. In this talk we will present which matrices

33



Conference on Integrable Systems & Nonlinear Dynamics ISND-2024

of the type

L(x11, . . . , x33) =

x11 x12 x13
x21 x22 x23
x31 x32 x33


may lead to new solutions of 4-simplex equations i.e. they have solution
to local tetrahedron equation if X is a division ring. We study differ-
ence in classification between commutative case which was studied in
[1] and noncommutative case. Additionally, we introduce procedure
to get novel 4-simplex maps associated with known tetrahedron maps
from [2]. Also, we introduce conditional n-simplex maps and study it
with examples of 4-simplex maps. Lastly, several innovative 4-simplex
maps on noncommutative groups and division rings are constructed.

The author was supported by the Russian Science Foundation (project No. 20-

71-10110 https://rscf.ru/project/23-71-50012/).
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CONSTRUCTIONS OF NEW NONLINEAR
INTEGRABLE DIFFERENTIAL-DIFFERENCE

EQUATIONS AND MIURA-TYPE TRANSFORMATIONS

E.V. Chistov

Center of Integrable Systems, P.G. Demidov Yaroslavl State
University, Yaroslavl, Russia; pigman0007@gmail.com

This talk is devoted to (nonlinear) integrable differential-difference
equations and their Miura-type transformations (MTs). For a given
equation E, equations obtained from E by applying MTs are called
modified equations corresponding to E.

MTs possess the following remarkable properties:

• Applying MTs to a given integrable equation, one gets modified
equations which are integrable as well.

• One can often obtain an auto-Bäcklund transformation for a
given equation E by using two MTs for E.

In this talk I will demonstrate methods for constructing new non-
linear integrable equations connected by new MTs to known equations.

DEGENERATE BILLIARDS WITH SEMI-RIGID WALLS
AND NONLINEAR SHORE WAVES

S.Yu. Dobrokhotov1, D. S. Minenkov2, M.M. Votiakova3

1Ishlinsky Institute for Problems in Mechanics RAS,
Moscow, Russia; s.dobrokhotov@gmail.com

2Ishlinsky Institute for Problems in Mechanics RAS,
Moscow, Russia; minenkov.ds@gmail.com

3Ishlinsky Institute for Problems in Mechanics RAS,
Moscow, Russia; votiakova.mm@phystech.edu

By billiards with semi-rigid walls we mean special solutions of
Hamiltonian systems defined on a two-dimensional plane (x1, x2) by
Hamiltonians H = D(x1, x2)(p

2
1+p

2
2), where D(x) is a smooth function

that vanishes on some smooth closed curve Γ, with ∇D
∣∣∣
Γ
̸= 0. Such

35



Conference on Integrable Systems & Nonlinear Dynamics ISND-2024

billiards arise in the theory of waves on water in limited and unlimited
basins, the functionD describes the bottom of the basin and inside the
basin takes positive values. The curve Γ is the coastline. In the work
[1], under the condition of integrability of the Hamiltonian system
with the Hamiltonian H, using the semiclassical approximation and
the modified Carrier-Greenspan transformation, time-periodic asymp-
totic solutions of a nonlinear system of shallow water equations in
basins with shallow shores localized in the vicinity of the coastline
were constructed. The corresponding trajectories of the Hamiltonian
system form non-compact (”non-standard”) Liouville tori, their pro-
jections on the plane (x1, x2) sweep the annular area and reflect off
some simple caustics located inside the pool and the shoreline, which
is a ”non-standard” caustic. The defect of the solutions constructed
in [1] consists in the requirement of integrability of the introduced
Hamiltonian system, which practically cannot be fulfilled in real situ-
ations. In this talk, we mainly consider degenerate situations [2] when
”standard” caustics are very close to the coastline (”non-standard”
caustics). Then ‘fast and slow variables” appear in the Hamiltonian
system, the requirement of integrability then disappears, and it is al-
ways possible to construct effective asymptotic wave solutions with a
small number of oscillations normal to the shore (which are analogs of
Stokes and Ursell waves). The corresponding trajectories are strongly
localized in the narrow vicinity of the coast, while they always enter
the coastline and reflect from it at an angle of 90 degrees. Thus, we
have asymptotic solutions similar to the ”whispering gallery” type so-
lutions known in acoustics, but at the same time, their existence due
to the ”degenerate” wall (coastline) does not require the convexity of
the two-dimensional region in which the pool is located, that is, the re-
gion on the two-dimensional plane (x1, x2), in of which D(x1, x2) > 0.
The examples show the dependence of the local amplitude of nonlinear
waves on the angle of inclination, curvature of the coastline, etc.

The authors were supported by the Russian Foundation for Basic Research

project no. 24-11-00213).
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MULTIDIMENSIONAL RIEMANNIAN METRICS FOR
INTEGRATING THE NAVIER–STOKES EQUATIONS

V. Dryuma

Moldova State University, Institute of Mathematics and Computer
Science “Vladimir Andrunachievici,” Chisinau, Republic of Moldova;

valdryum@gmail.com

The properties of 14D-metric which is the Ricci-flat Rik = 0 on
solutions of the Navier-Stokes equations in the Euler variables are
studied.

For the study properties of Navier-Stokes equations in Lagrangian
variables the 6D-metric is introduced and examples of their particular
solutions are constructed.

The authors was supported by Research project no.011303.
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NUMERICAL STUDY OF STABLE REGIMES AND
BIFURCATIONS IN A DYNAMICALLY

SELF-ORGANIZING SYSTEM

D.D. Fedulov

A.N. Kolmogorov Joint Institute of Mathematics and Computer
Sciences, P.G. Demidov Yaroslavl State University, Russia;

mr.fedulow@yandex.ru

The system under consideration is described by the following equa-
tions:

dun
dt

= −N(vn+1 − vn) + µun − u3n,
dvn
dt

= −N(un − un−1), (1)

u0 = 0, vN+1 = β
duN
dt

, n = 1, 2, . . . , N. (2)

This model describes the behavior of an autogenerator, which con-
sists of a chain of N sequentially coupled simplified FitzHugh-Nagumo
neurons. A resistor and a constant power source are connected to one
end of the chain, while a fixed capacitor is connected to the other end.

Of particular interest is the regime where N ≫ 1, prompting the
transition to a continuous model:

∂u

∂t
= −∂v

∂x
+ µu− u3,

∂v

∂t
= −∂u

∂x
, (3)

u|x=0 = 0,

(
β
∂v

∂x
+ v

) ∣∣∣∣
x=1

= β(µu− u3)|x=1. (4)

In the continuous model, the quasinormal form is derived at the
critical values of the parameter using standard methods.(see, for ex-
ample, [1], [2]):

η̇l =

[
δl − dl ηl −

∞∑
m=1
m̸=l

dl,m ηm

]
ηl, l ≥ 1. (5)

In the first stage of the study, conditions for the existence and sta-
bility of equilibrium states are determined for the quasinormal form.
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Numerical analysis has shown that only single-mode equilibrium states
are stable.

The next stage includes a large-scale numerical experiment to study
the bifurcations of periodic single-mode regimes, which were con-
structed using analytical formulas.

It has been shown that for system (1)-(2), stable invariant tori and
cycles are present at various values of the parameter µ.

The results of the study suggest that all oscillators included in the
network are not generators (the only stable state is the zero equilib-
rium), but when coupled in the network, they exhibit complex behav-
ior.

This work was supported by the Russian Science Foundation (project No. 22-

11-00209), https://rscf.ru/en/project/22-11-00209/
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NONLINEAR INTERACTIONS OF SOLITONS AND
EXTERNAL FORCES

M.V. Flamarion1, E. Pelinovsky2

1Departamento Ciencias–Sección Matemáticas, Pontificia
Universidad Católica del Perú, Av. Universitaria 1801, San Miguel

15088, Lima, Peru;
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2National Research University–Higher School of Economics, Moscow,
Russia; Il’ichev Pacific Oceanological Institute Far Eastern Branch

Russian Academy of Sciences, Vladivostok 690041, Russia;
pelinovsky@ipfran.ru

We consider the interactions between solitons and external forces in
various nonlinear equations, including the Benjamin-Ono (BO) equa-
tion, the Schamel equation, and the modified Korteweg-de Vries
(mKdV) equation. Assuming a weak external force, we derive a dy-
namical system that governs the evolution of the soliton amplitude
and position. The dynamical system predicts (i) resonance between
the soliton and the external force, (ii) oscillatory motion character-
ized by closed orbits, and (iii) displacement from the initial position
while maintaining the soliton direction. However, numerical simula-
tions reveal the emergence of an unstable spiral pattern instead of
closed orbits. Furthermore, we also consider the external force to be
random. In particular, for the BO equation, we demonstrate that ran-
domness primarily manifests in the soliton phase. Assuming a uniform
distribution for the soliton phase, we analytically compute the aver-
aged soliton field and its statistical moments. Under these conditions,
we show that the averaged soliton field spreads and dampens.

E.P. was supported by the Russian Science Foundation (project No. 24-47-

02007).
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PERIODIC REGIMES OF MULTICLUSTER
SYNCHRONIZATION IN COUPLED NETWORKS

OF NONLINEAR OSCILLATORS WITH INTEGRAL

S.D. Glyzin1, A.Yu. Kolesov2

1Centre of Integrable Systems, P.G. Demidov Yaroslavl State
University, Russia; glyzin.s@gmail.com

2Centre of Integrable Systems, P.G. Demidov Yaroslavl State
University, Russia; kolesov@uniyar.ac.ru

A fully coupled network of nonlinear oscillators of the form

ẋj = Fj(xj, uj), j = 1, 2, . . . ,m (1)

is considered. Here, m ≥ 2, xj = xj(t) ∈ Rn, n ≥ 2, the dot over xj

is used to denote differentiation with respect to t, uj =
m∑

s=1 s̸=j

Gs(xs),

and the vector functions Fj(x, u), Gj(x), j = 1, 2, . . . ,m, with values
in Rn, are infinitely differentiable by their variables (x, u) ∈ Rn × Rn

and x ∈ Rn.
Let the partial systems, which correspond to (1)

ẋ = Fj(x, 0), j = 1, 2, . . . ,m (2)

have an exponentially orbitally stable cycle. We consider the situa-
tion, when oscillators (2) interact with each other according to the
principle “everyone with everyone”. This problem was introduced by
the authors in the articles [1–3]. The conditions for the existence and
stability of traveling waves and two-cluster synchronization are found.
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In this work we consider a generalization of the problem (1). We
now consider the case of a continuum number of oscillators in the
network, and arrive at an integro-differential equation of the form

∂x

∂t
= F (x, u), (3)

where u =
∫ 1

0 G(x(t, s))ds, and, for every t > 0, x(t, s) ∈ L∞
(
[0, 1];Rn

)
,

n ≥ 2.
Let us introduce the definition of the multi-cluster synchronization

mode.

Definition. Let [0, 1] =
r⋃

k=1

Ak, where Ak are Lebesgue measurable

with positive measure. A periodic solution x0(t, s) of Eq.(3) is called
a multicluster synchronization mode, if the following is true:

x0(t, s) = {Vk(t) for s ∈ Ak, k = 1, . . . , r},

almost everywhere with respect to s, Vk(t) ≡ Vk(t + T ), where T is a
period, Vk(t) ̸= Vj(t) for every t > 0, k ̸= j.

In this work, conditions for the existence and stability of a contin-
uous family of multi-cluster synchronization modes are found.

This work was supported by the Russian Science Foundation (project No. 22-

11-00209), https://rscf.ru/en/project/22-11-00209/.
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ONE METHOD FOR THE VERIFICATION OF
HYPERBOLICITY

S.D. Glyzin1, A.Yu. Kolesov2
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We consider an arbitrarily chosen open set U ⊂ M, where M
is a smooth Riemannian manifold of dimension m, m ≥ 2, and a
map f : U → M from C1, that is a diffeomorphism from U to
f(U) ⊂ M. Assume that there exists a compact subset A ⊂ U, such
that f(A) = A. In this work we present two sets of sufficient condi-
tions under which the invariant set A of the diffeomorphism f has the
hyperbolicity property. Along with that, a new method is developed
for the verification of hyperbolicity, alternative to the well-known cone
criterion (see [1]).

Everywhere below, by || · || we denote the Riemannian norm in the
tangent space TxM, induced by some Riemannian metric on M (we
omit the dependence of this norm on x ∈ M for brevity). For each
point x ∈ A we define the operators

D(fn(x)) = Df(xn−1) ◦Df(xn−2) ◦ . . . ◦Df(x0),
D(f−n(x)) = [Df(x−n)]

−1 ◦ [Df(x−(n−1))]
−1 ◦ . . . ◦ [Df(x−1)]

−1, n ∈ N,

where Df(x) : TxM → Tf(x)M is the differential of the map f, xj =
f j(x), j ∈ Z.

Definition (U). An invariant set A is called hyperbolic for the map
f, if, firstly, for every x ∈ A the tangent space TxM can be represented
as a direct sum
TxM = Eu

x ⊕Es
x of linear subspaces Eu

x , E
s
x, with the invariance prop-

erties
Df(x)Eu

x = Eu
f(x), Df(x)Es

x = Es
f(x) ∀x ∈ A;

secondly, there exist constants µ1, µ2 ∈ (0, 1), c1, c2 > 0, such that

||D(f−n(x))ξ|| ≤ c1µ
n
1 ||ξ|| ∀x ∈ A, ∀ ξ ∈ Eu

x , ∀n ∈ N,

||D(fn(x))ξ|| ≤ c2µ
n
2 ||ξ|| ∀x ∈ A, ∀ ξ ∈ Es

x, ∀n ∈ N.
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Recall that in [2] hyperbolic diffeomorphisms were referred to as
U - diffeomorphisms or U-systems.

We now proceed to describing the constraints which ensure the
hyperbolicity of the invariant set A.

Condition 1 For every x ∈ A, the decomposition holds

TxM = E1(x)⊕ E2(x), (1)

where ⊕ is direct sum of the linear subspaces E1(x), E2(x) which, gen-
erally speaking, are not Df -invariant and not necessarily continuous
on x ∈ A. Their dependence on x is such that for the corresponding
projectors

P (x), Q(x) : ∀ ξ = ξ1(x) + ξ2(x), ξ1(x) ∈ E1(x), ξ2(x) ∈ E2(x),

P (x)ξ = ξ1(x), Q(x)ξ = ξ2(x)
(2)

the following inequalities hold

sup
x∈A

||P (x)||TxM→TxM <∞, sup
x∈A

||Q(x)||TxM→TxM <∞. (3)

Since the projectors P (x) and Q(x) are not continuous, conditions
(3) are not automatically satisfied. Therefore, we require their ful-
fillment. The geometric meaning of these conditions consists in the
separability from zero of the angle between the subspaces E1(x) and
E2(x) in (1).

Using the decomposition (1) and projectors (2), let us introduce
the operators

Λj,1(x) = P (f(x))Df(x) : Ej(x) → E1(f(x)), j = 1, 2, (4)

Λj,2(x) = Q(f(x))Df(x) : Ej(x) → E2(f(x)), j = 1, 2, (5)

Condition 2 Assume that for every x ∈ A the inequality dimE1(x) >
0 holds, the linear operator Λ1,1(x) from (4) is invertible, and

sup
x∈A

||Λ−1
1,1(x)||E1(f(x))→E1(x) <∞. (6)

Formulas (4) – (5) and condition 2 allow to define the sets of con-
stants

α1 = sup
x∈A

||Λ−1
1,1(x)||E1(f(x))→E1(x), α2 = sup

x∈A
||Λ2,2(x)||E2(x)→E2(f(x)),

(7)
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β1 = sup
x∈A

||Λ1,2(x)||E1(x)→E2(f(x)), β2 = sup
x∈A

||Λ−1
1,1(x)Λ2,1(x)||E2(x)→E1(x),

(8)
γ1 = sup

x∈A
||Λ1,2(x)Λ

−1
1,1(x)||E1(f(x))→E2(f(x)), γ2 = sup

x∈A
||Λ2,1(x)||E2(x)→E1(f(x)),

(9)
The following statements holds.

Theorem 1 Let the conditions 1, 2 and the inequalities

α1 < 1, α2 < 1, min(β1β2, γ1γ2) < (1− α1)(1− α2), (10)

hold, where αj, βj, γj, j = 1, 2 are given by (7) – (9). Then, the
invariant set A of the diffeomorphism f is hyperbolic.

Similar results to Theorem 1 are given in [3,4], where, using the
singularities of the area of the ring for diffeomorphisms, sufficient con-
ditions for the hyperbolicity of the attractor are obtained.

This work was supported by the Russian Science Foundation (project No. 21-
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HYPERBOLIC STABLE POLYNOMIALS AND TOTAL
POSITIVITY

D.A. Golitsyn

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
dengo123455@gmail.com

In my report I will express the condition for hyperbolicity and sta-
bility of a real polynomial in terms of the oscillation of some matrix
associated with it. The result uses the Sturm chain technique as well
as the classical theorems and statements about totally positive matri-
ces formulated by Gantmacher and Krein. The resulting condition is
closely related to Toeplitz positivity and the problem of parametrizing
special cells of positive manifolds.

The work of D. Golitsyn was carried out within the framework for the Regional

Scientific and Educational Mathematical Center of the Yaroslavl State University

with financial support from the Ministry of Science and Higher Education of the

Russian Federation (Agreement on provision of subsidy from the federal budget

No. 075-02-2023-948).
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ON LYAPUNOV DIMENSION OF DIFFUSION CHAOS
IN ONE ECOLOGICAL MODEL

V.E. Goryunov

Yaroslavl State University, Yaroslavl, Russia; salkar@ya.ru

This work is about a multimode diffusion chaos at low values of
diffusion parameter in a spatially distributed Hutchinson equation,
which describes the population density dynamics on a line segment:

∂N

∂t
= D

∂2N

∂x2
+ r (1−Nt−1)N,

∂N

∂x

∣∣∣∣
x=0

= 0,
∂N

∂x

∣∣∣∣
x=1

= 0.

Here N(t, x) is the population density at time t and point x of a line
segment Ω (Ω = {x | 0 ≤ x ≤ 1}), D is a diffusion coefficient, r is
a Malthusian coefficient of linear growth, Nt−1 ≡ N(t − 1, x). Some
analytical and numerical results are described in [1, 2] in more complex
spatially case.

If we consider differential-difference model, we can calculate the
values close to Lyapunov exponents and thus evaluate Lyapunov di-
mension (see [3, 4]), using the algorithm that is described in paper [5].

Graphs of the dependence of the approximate Lyapunov dimen-
sion on the diffusion coefficient and on the number of partition points
were constructed, that show the existence of multimode diffusion chaos
when diffusion parameter D is close to zero.

In addition, it is possible to prove the closeness of the dynamical
properties of the continuous model and its difference approximation.

This work was supported by the Russian Science Foundation (project No. 22-

11-00209), https://rscf.ru/en/project/22-11-00209/
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BIFURCATIONS AND CHAOTIC ATTRACTORS OF
FOUR DIMENSIONAL HENON-LIKE MAP WITH

POLYNIMIAL NONLINEARITY

D.A. Grechko

Volga state university of water transport, Nizhny Novgorod, Russia;
dina.grechko@unn.ru

The generalized Henon map has the form

T :
x̄ = f(x) + 1y ≜ g(x, y),

ȳ = bx+ Ay ≜ L(x, y),
(1)

where x ∈ R1, y = column(y1, y2, . . . , yn) ∈ Rn, 1 is the all ones line of
length n, f(x) is a continuous smooth function, b = column(µ, 0, 0, . . . , 0),
µ is the parameter, A is contructing matrix having zero first row.
In this talk we consuder a particular four dimentional case of this map
then f(x) is a polynomial function and µ is a small parameter.

Using the small parameter method [1,2], we derive bifurcations
and chaotic attractors of this map reconstructed from those of one-
dimensional map x→ f(x).

This work was supported by the Russian Science Foundation under grant No.

24-21-00420.
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REDUCTION OF THE LAPLACE SEQUENCE AND
SINE-GORDON TYPE EQUATIONS

I. T. Habibullin1, A.R. Khakimova2, M.N. Kuznetsova3,
K. I. Faizulina4

1Institute of Mathematics with Computing Centre - Subdivision of
the Ufa Federal Research Centre of Russian Academy of Science,
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It is well known that the cascade method of Laplace integration is
an effective tool for constructing solutions to linear equations of hy-
perbolic type, as well as nonlinear equations of Liouville type. The
connection between Laplace’s method and soliton equations of hyper-
bolic type remains less studied. In a series of our works ([1]-[3]), it
was shown that the sequence of Laplace transforms also has impor-
tant applications in the theory of hyperbolic equations of soliton type.
Namely, that the sequence of Laplace provides a simple way to con-
struct such fundamental objects related to the theory of integrability
as the recursion operator, the Lax pair and equations of Dubrovin
type, allowing one to find algebraic-geometric solutions. As a result of
applying this approach, previously unknown recursion operators and
Lax pairs were found for several nonlinear integrable equations of the
sine-Gordon type.
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NONCOMMUTATIVE N−TORUS IN A MAGNETIC
FIELD: VOLUME INVARIANCE, SCALAR CURVATURE

AND QUANTUM STOCHASTIC EQUATION

Mahouton Norbert Hounkonnou1, Fridolin Melong2

1International Chair in Mathematical Physics and Applications
(ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 B.P.
50 Cotonou, Benin Republic; norbert.hounkonnou@cipma.uac.bj

2International Centre for Research and Advanced Studies in
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(ICRASMCSA), 072 B.P. 50 Cotonou, Benin Republic;

fridomelong@gmail.com

Motivated by the works of Chakraborty et al [ J. operator the-
ory, 49(2003), 185 − 201] and Sakamoto and Tanimura [ J. Math.
Phys.,44, (2003), 5042], we investigate the noncommutative n− torus
in a magnetic field. We study the invariance of volume, integrated
scalar curvature and volume form using the method of perturbation
by inner derivation of the magnetic Laplacian in this geometric frame-
work. Moreover, we derive the magnetic stochastic process describing
the motion of a particle in a uniform magnetic field in this torus and
deduce the properties of the solution of the corresponding magnetic
quantum stochastic differential equation.
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DISCRETE MIURA-TYPE TRANSFORMATIONS,
GAUGE SIMPLIFICATIONS, AND GROUP ACTIONS
ASSOCIATED WITH LAX REPRESENTATIONS FOR

DIFFERENTIAL-DIFFERENCE EQUATIONS

S.A. Igonin

Center of Integrable Systems, P.G. Demidov Yaroslavl State
University, Yaroslavl, Russia; s-igonin@yandex.ru

In this talk I will present new results on relations between differential-
difference matrix Lax representations, gauge transformations, and dis-
crete Miura-type transformations, which belong to the main tools in
the theory of (nonlinear) integrable differential-difference equations.
Such equations occupy a prominent place in the modern theory of in-
tegrable systems and are presently the subject of intensive study. In
particular, such equations arise as discretizations of integrable PDEs
and various geometric constructions and as chains associated with
Darboux transformations of PDEs (see, e.g., [1, 2, 3, 4] and references
therein).

I will present sufficient conditions for the possibility to simplify a
differential-difference matrix Lax representation by local matrix gauge
transformations. Also, I will present a method to construct Miura-
type transformations for differential-difference equations, using gauge
transformations and invariants of Lie group actions on manifolds as-
sociated with Lax representations of such equations.

The method is applicable to a wide class of Lax representations.
The considered examples include the (modified) Volterra, Itoh-Narita-
Bogoyavlensky, Belov-Chaltikian, Toda lattice equations and Adler-
Postnikov equations from [5] as well as the equation (introduced by
G. Maŕı Beffa and Jing Ping Wang [3]) which describes the evolution
induced on invariants by an invariant evolution of planar polygons.
Applying our method to these examples, one obtains new integrable
nonlinear differential-difference equations connected with these equa-
tions by new Miura-type transformations.

Some steps of our method generalize (in the differential-difference
setting) a result of V.G. Drinfeld and V.V. Sokolov [6] on Miura-
type transformations for the partial differential Korteweg–De Vries
equation.
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This talk is based on the paper [7] and new developments of results
from a joint work with G. Berkeley [8].

This work was funded by the Russian Science Foundation project No. 20-71-
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3. Maŕı Beffa G., Wang J. P., “Hamiltonian evolutions of twisted polygons
in RPn,” Nonlinearity, 26, 2515 (2013).

4. Khanizadeh F., Mikhailov A.V., Wang J. P., “Darboux transformations and
recursion operators for differential-difference equations,” Theoret. and Math.
Phys., 177, 1606–1654 (2013).

5. Adler V.E., Postnikov V.V., “Differential-difference equations associated
with the fractional Lax operators,” J. Phys. A: Math. Theor., 44, 415203
(2011).

6. Drinfeld V.G., Sokolov V.V., “On equations that are related to the
Korteweg–de Vries equation,” Soviet Math. Dokl., 32, 361–365 (1985).

7. Igonin S., “Simplifications of Lax pairs for differential-difference equations by
gauge transformations and (doubly) modified integrable equations,” Partial
Differential Equations in Applied Mathematics, 11, 100821 (2024).

8. Berkeley G., Igonin S., “Miura-type transformations for lattice equations and
Lie group actions associated with Darboux–Lax representations,” J. Phys.
A: Math. Theor., 49, 275201 (2016).

DYNAMICS OF ONE CAUCHY PROBLEM WITH
IMPULSES

L. I. Ivanovsky

A.N. Kolmogorov Institute of Mathematics and Computer Science,
P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;

leon19unknown@gmail.com

Let us consider a fully connected association of singularly per-
turbed differential equations with a delay presented as a mathematical
model of the impulse system [1]

u̇j = d
m∑
s=1
s̸=j

σ

(
us
uj

)
+λ(−1+αf(uj(t−1))−βg(uj))uj, j = 1,m, (1)

52



where uj = uj(t) > 0, m = 3, real parameters d > 0, λ ≫ 1, β >
0, α > 1 + β, coupling function σ(u) is presented as

σ(u) =
δ(u− 1)

u+ δ
, δ ∈ (0, 2−

√
3) ∪ (2 +

√
3,+∞)

and smooth functions f(u), g(u) ∈ C2(R+) have the following condi-
tions

0 < βg(u) < α, f(0) = g(0) = 1, ∀u ∈ R+,

f(u), g(u), uf ′(u), ug′(u), u2f ′′(u), u2g′′(u) = O(1/u) for u→ +∞.

For system (1) there were researched tasks of existence, stability and
asymptotic representation of periodic solutions based on a bifurcation
analysis of the special two-dimensional map [1]

Φ(z) :

(
z1
z2

)
→
(
y1(T0, z1, z2)
y2(T0, z1, z2)

)
,

where T0 = α + 1 + (β + 1)/(α − β − 1) is the first approximation
of a stable cycle of a single oscillator in system (1) and functions
y1(t, z1, z2), y2(t, z1, z2) have entry conditions y1(−0) = z1, y2(−0) =
z2. The main focus of this research was on the number of coexisting
stable regimes. Some results of this research for the certain values of
parameters α, β, δ were published in article [2].

This work was supported by the Russian Science Foundation (project No. 22-
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ASYMPTOTIC INTEGRABILITY

A.M. Kamchatnov

Institute of Spectroscopy RAS, Moscow, Russia;
kamchatnov@gmail.com

In this talk, we shall consider a property of nonlinear wave equa-
tions called their asymptotic integrability. It means that two asymp-
totic limits of the wave motion, namely, the dispersionless evolution
of smooth pulses and the propagation of high-frequency wave pack-
ets, are integrable in the sense that the Hamilton equations for a
wave packet have an integral of motion for any dispersionless evolu-
tion of the background flow [1,2]. It turns out that in case of equations
with two wave variables such an integral does only exist for very spe-
cial forms of the dispersion relation for linear waves. It is shown [3]
that the expression for this integral is related with the quasi-classical
limit of the Lax spectral problem in the Ablowitz-Kaup-Newell-Segur
scheme. The quasi-classical limit of the second equation of the Lax
pair is equivalent to the ‘number of waves’ conservation law. This
approach allows one to obtain dispersive generalizations of hydrody-
namic equations. The theory is also illustrated by applications to the
Hamiltonian theory of propagation of solitons along non-uniform and
time-dependent background wave [4,5].

The author was supported by the Russian Science Foundation (project No. 19-

72-30028).
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NETWORK MODEL OF LIMBIC SEIZURE
PROPAGATION

A.A. Kapustnikov1, I. V. Sysoev2, M.V. Kornilov3
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Limbic epilepsy also known as temporal lobe epilepsy is the most
widespread and clinically relevant epilepsy form [1]. Though the clin-
ical study of limbic seizures has been long and persistent [2], there is
no mathematical models of seizure generation.

Here, we propose a new approach to mathematical modeling the
limbic seizures. As the first step we constructed a central pattern ring
generator to provide a main frequency [1]. This generator consists of
a number (usually from six to some dozens) of hippocampal pyramid
neurons. For all neurons the models in the Hodgkin–Huxley formal-
ism were written down and the synapses were established in the form
of sigmoid function and delay line, given a system of DDEs for the
whole ensemble. The analytical hypothesis was established for the
dependency of the main frequency on the number of neurons and the
delayed in the coupling. This hypothesis was tested for a number of
regimes using calculated series and was shown to well (with a relative
square error about 10−4) match the simulations.

Then, we made a next step and provided a model of synchroniza-
tion of surrounding areas (an ensemble of hippocampal and cortical
mathematical neurons) by the central pattern generator. The ability
of the ensemble to be synchronized significantly depends on its net-
work architecture (directed graph, or matrix of connections). To study
which connectivity matrices correspond to better synchronization and
therefore may be considered as models of epileptic brain structures, we
studied spectra of eigenvalues of all randomly generated connectivity
matrices as well as of matrices constructed from those be adding of
deleting some connections (small perturbations). As a result we pro-
pose a relatively small (∼ 102 oscillators) network dynamical model of
limbic seizure propagation constructed in the form of DDEs base on
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anatomical rules and using specific biophysical models for each neuron
type.
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TRAVELLING WAVES IN THE RING OF COUPLED
OSCILLATORS WITH DELAYED FEEDBACK
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We study the travelling waves in the unidirectionally coupled ring
of N oscillators with delay of the form

ẋk + xk = λF (xk(t− T1)) + γ(xk−1 − xk), k = 1, . . . , N, x0 ≡ xN ,

where parameter λ is positive and sufficiently large (λ ≫ 1), delay
time T1 and coupling parameter γ are positive, and feedback function
F is a compactly supported positive function, that is

F (y) =

{
f(y), if y ∈ [−p, p],
0, if y < −p or y > p,

where p is some positive constant and f(y) > 0 for all y ∈ (0, p],
f(y) is a piece-wise continuous and bounded function on the segment
y ∈ [−p, p].
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This problem was reduced to studying dynamics of equation with
two delays

ẋ+ x = λF (x(t− T1)) + γ(x(t− T2)− x).

Using special asymptotic method of large parameter we prove that this
equation has a relaxation cycle and study its properties: amplitude,
period, asymptotics. The sufficient conditions of stability are found.
Based on this periodic solution the travelling waves of initial model
were constructed.

This work was supported by the Russian Science Foundation (project No. 22-
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DYNAMICS OF FULL-COUPLED CHAINS
OF A GREAT NUMBER OF OSCILLATORS
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The subject of this work is the study of local dynamics of full-
coupled chains of a great number of oscillators with a large delay
in couplings. From a discrete model describing the dynamics of a
great number of coupled oscillators, a transition has been made to
a nonlinear integro-differential equation, continuously depending on
time and space variable. A class of full-coupled systems has been
considered. The main assumption is that the amount of delay in the
couplings is large enough. This assumption opens the way to the use
of special asymptotic methods of study. The parameters under which
the critical case is realized in the problem of the equilibrium state
stability have been distinguished. It is shown that they have infinite
dimension. The analogues of normal forms – nonlinear boundary value
problems of Ginzburg–Landau type have been constructed. In some
cases, these boundary value problems contain integral components too.
Their nonlocal dynamics describes the behavior of all solutions of the
original equations in the balance state neighbourhood.

As applied to the considered problems, methods of constructing
quasinormal forms on central manifolds are developed. An algorithm
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for constructing the asymptotics of solutions based on the use of quasi-
normal forms for determining slowly varying amplitudes has been cre-
ated.

Quasinormal forms that determine the dynamics of the original
boundary value problem have been constructed. The dominant terms
of asymptotic approximations for solutions of the considered chains
have been obtained. On the basis of the given statements, a number
of interesting dynamical effects have been revealed. For example, an
infinite alternation of direct and reverse bifurcations when the delay
coefficient increases. Their distinguishing feature is that they have
two or three spatial variables.

This work was supported by the Russian Science Foundation (project no. 21-
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Consider two coupled oscillators with delayed feedback{
u̇1 + u1 = λF (u1(t− T )) + γ(u2 − u1),

u̇2 + u2 = λF (u2(t− T )) + γ(u1 − u2),
(1)

where functions u1 and u2 are real and scalar.
Function F (x) is defined by the formula

F (x) =


b, x < pL,

f(x), x ∈ [pL, pR], pL < 0 < pR,

d, x > pR,

λ≫ 1, γ ∈ (−1

2
, 0) ∪ (0,+∞).

Function f(x) — is nonlinear, piece-wise continuous, bounded and
f(x) ̸= 0 on any segment of non-zero length.
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The conditions for the existence of the following five types of solu-
tions were found and the asymptotics were constructed:
1) solutions tending to a positive constant λd;
2) solutions tending to a negative constant λb;
3) solutions whose components tend to constants of different signs;
4) homogeneous cycle;
5) unhomogeneous cycle.

For each type of solution, stability was investigated, including an-
alytically finding the regions of attraction for constant solutions.

ON QUADRIRATIONAL PENTAGON MAPS

P. Kassotakis

University of Warsaw, Warsaw, Poland; pavlos1978@gmail.com

We classify rational solutions of a specific type of the set theoretical
version of the pentagon equation. That is, we find all quadrirational
maps R : (x, y) → (u(x, y), v(x, y)), where u, v are two rational func-
tions on two arguments, that serve as solutions of the pentagon equa-
tion. Furthermore, provided a pentagon map that admits a partial in-
verse, we obtain genuine entwining pentagon set theoretical solutions.
Finally, we show how to obtain Yang–Baxter maps from entwining
pentagon map.
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ELECTRICAL NETWORKS AND THE TOTALLY
POSITIVE SYMPLECTIC MATRICES
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A square matrix is totally positive if all its minors are positive.
The study of this type of matrices was motivated by some remarkable
physical problems [3] and largely gave rise of the theory of totally
positive Grassmannians [6]. One of the cornerstone result in the theory
of totally positive matrices is the Loewner-Whitney theorem [6]:

Theorem 1. Each totally positive matrix can be decomposed in
a product of elementary Jacobi matrices and a diagonal matrix with
positive parameters.

It is also natural and interesting to clarify Theorem 1 for differ-
ent subsemigroups of the semigroup of totally positive matrices. In
the focus of my talk will be an attempt to do it for totally positive
symplectic matrices, which we will be studied with circular electri-
cal networks and their embeddings to totally positive Grassmannians
[1], [4], [5]. Particularly, we will demonstrate that the problem of pa-
rameters computing mentioned in Theorem 1 in case of totally pos-
itive symplectic matrices can be considered as the well-known and
very important black-box problem [2], which consists in recovering of
conductivities of an electric network by its response matrix [2].

The author was supported by the Russian Science Foundation grant 20-71-

10110 (P).
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TOPOLOGICAL MODELING OF SINGULARITIES
WITH SADDLE AND FOCAL COMPONENTS VIA

BILLIARDS

V.A. Kibkalo

Lomonosov Moscow State Univesrity, Moscow, Russia;
slava.kibkalo@gmail.com

Nondegenerate singularities of integrable Hamiltonian systems can
be described in topological sense (up to fiberwise homeomorphisms)
as direct or semi-direct products of a “more simple” singularities of
systems of 1 d.o.f. (center or saddle components) or systems of 2
d.o.f. (focal components) and may be a regular foliation Dk × T k. In
a semi-direct product case, a finite group acts on the product s.th.
the action is free, preserves the rank of momentum map. This result
for singularities of a general case in the semilocal sense (invariant
neighbourhood of a singular fiber) was obtained by N.T.Zung [1]. For
more details about topological approach to integrable Hamiltonian
systems see [2].

In our talk we will discuss the realization problem of such singular-
ities via billiards. For arbitrary nondegenerate semi-local singularities
of systems with 3 degrees of freedom with saddle and focal components
billiard systems with a potential field were constructed s.th. their Li-
ouville foliation contains singularity fiberwise to the one. Such billiard
system is determined on a flat confocal billiard domain or a locally-flat
3-dimensional CW-complex with permutations glued from such flat
confocal domains by their common boundary 2-cells. Such class of
systems considered by us is a multi-dimensional generalization of “bil-
liard books” suggested earlier by V.Vedyushkina. Integrable billiard
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systems on such domains model a wide class of integrable Hamiltonian
systems with 2 d.o.f. and their singularities.

The work is supported by Russian Science Foundation, grant 22-71-10106 and

done at Lomonosov MSU.
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DYNAMICS OF NEURAL NETWORKS WITH
ADAPTIVE DELAYS

V.V. Klinshov1, V. I. Nekorkin1

1A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian
Academy of Sciences, Nizhny Novgorod, Russia

vladimir.klinshov@ipfran.ru

Neuronal plasticity allows brain to learn and adapt by remodeling
of its structure. Apart from the well-known synaptic plasticity, there
are many other types of plasticity whose nontrivial interplay is crucial
for the implementation of various brain functions. One of the least
studied types of plasticity is the activity-dependent myelination of
axons [1] which makes synaptic delays adaptive. The present talk is
devoted to the possible role of adaptive delay in the collective dynamics
of neural networks. In contrast to the known results on stabilization
of neural activity [2], we show that the delay adaptation may lead to
the emergence of slow self-sustained oscillations [3].

REFERENCES

1. Gibson E.M. et al. “Neuronal activity promotes oligodendrogenesis and
adaptive myelination in the mammalian brain” Science, 344, No. 6193,
1252304 (2014).

2. Noori R. et al. “Activity-dependent myelination: A glial mechanism of oscil-
latory self-organization in large-scale brain networks” PNAS, 117, No. 24,
13227 (2020).

3. Klinshov V.V., and Nekorkin V. I. et al. “Adaptive myelination causes slow
oscillations in recurrent neural loops” Chaos, 34, No. 3, 033101 (2024).

62



NEGATIVE FLOWS

M.P. Kolesnikov

P.G. Demidov Yaroslavl State University, Russia;
kolesnikov.mp@phystech.edu

For an evolutionary system of equations possessing a recursion
operator we can introduce the notion of negative symmetry. Nega-
tive symmetries are of interest because they are often already known
important equations and additionally they are derivative functions
for higher symmetries. And the commutativity of negative symme-
tries corresponds to the so-called 3D compatible continuous equations.
Thus we study the negative symmetries for the KDV equation and for
the sine Gordon equation. We obtain a convenient notation for reduc-
tions from an additional subalgebra. And we also find new examples
of 3D compatible equations.

REFERENCES

1. V. E. Adler, M. P. Kolesnikov; Non-autonomous reductions of the KdV equa-
tion and multi-component analogs of the Painlevé equations P34 and P3. J.
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SELF-SIMILARITY AND COMBINATORIAL
CORRELATIONS IN THREE-DIMENSIONAL

STATISTICAL PHYSICS MODELS

Igor G. Korepanov

Moscow Aviation Institute, Moscow, Russia;
paloff@ya.ru

The report concerns the newly discovered self-similarity spin trans-
form on three-dimensional cubic lattices. In particular, it makes pos-
sible calculation of nontrivial spin correlations in a “combinatorial”
model, in which all permitted spin configurations have equal proba-
bilities.
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FAMILIES OF STEP SOLUTIONS OF QUASINORMAL
FORMS FOR A SYSTEM OF INTEGRO-DIFFERENTIAL

EQUATIONS

D. S. Kosterin

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
kosterin.dim@mail.ru

Consider the system of equations

∂u

∂t
= (A0+εA1)u+F2(u, u)+F3(u, u, u)+(D0+εD1)

1

2π

2π∫
0

u(t, x+s)dx,

where u = u(t, x) ∈ Rn, A0, A1, D0, D1 are n × n matrices, F2(∗, ∗),
F3(∗, ∗, ∗) are linear functions of their arguments, ε is small real num-
ber.

This system is considered with the periodic boundary condition

u(t, x+ 2π) ≡ u(t, x).

The zero solution of this boundary value problem is asymptotic
stable, when eigenvalues of matrices

A0 + εA1 +
1

2π
(D0 + εD1)

2π∫
0

exp(iks)ds (k = 0,±1,±2, . . . )

have negative real part.
Note that if k ̸= 0 then these matrices equal to A0 + εA1, and if

k = 0 then we have matrix A0 + εA1 +D0 + εD1. Thus in main part
stability of the zero solution of boundary value problem depends on
eigenvalues of matrices A0 and A0 +D0.

Let all of the eigenvalues of matrix A0+D0 have negative real part,
matrix A0 has one zero eigenvalue and other eigenvalues with negative
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real part. Then dynamics of solutions of boundary value problem near
zero solution describes by one-dimensional boundary value problem

∂ξ

∂τ
= ξ − (ξ3 −M(ξ3)), ξ(τ, x+ 2π) ≡ ξ(τ, x), M(ξ) = 0,

which called as quasinormal form. Here τ = εt, ξ = ξ(τ, x), M(ξ) =

1
2π

2π∫
0

ξ(τ, x)dx. Boundary value problems of this type have the solu-

tions in the form of step functions. We can describe the dynamics of
quasinormal form in the terms of α-stability of step solutions (see [1],
[2]).

Theorem 1. Quasinormal form has the family of step solutions

ξ(τ, x) =

{
± 2π−α√

4π2−6πα+3α2
, x ∈ [0, α),

∓ α√
4π2−6πα+3α2

, x ∈ [α, 2π).
(1)

Solution of that family is asymptotic α-stable, if 2π
3 < α < 4π

3 .
Now let matrix A0 has a one simple pair of imaginary eigenvalues,

other eigenvalues have negative real part. Then dynamics of boundary
value problem describes by quasinormal form

∂ξ

∂τ
= λξ + σ(ξ|ξ|2 −M(ξ|ξ|2)) + βξM(|ξ|2) + γξM(ξ2),

ξ(τ, x+ 2π) ≡ ξ(τ, x), M(ξ) = 0,

where Reλ > 0, Re σ < 0, Re β < 0.
Theorem 2. Quasinormal form has the family of solutions

ξ(τ, x) = ρ(x)eiω(α)τ ,

where

ρ(x) =

{
ρ1(α), x ∈ [0, α),

ρ2(α), x ∈ [α, 2π).

This work was supported by the Russian Science Foundation (project No. 22-
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INVESTIGATION OF SELF-OSCILLATING SOLUTIONS
OF A MATHEMATICAL MODEL OF DYNAMICS

OF A RIGID DISK ON A FLEXIBLE SHAFT

E.P. Kubyshkin1, V.D. Romanov2

1P.G.Demidov State University, Yaroslavl, Russia;
kubysh.e@yandex.ru

2P.G.Demidov State University, Yaroslavl, Russia;
ne555220@yandex.ru

The self-oscillatory solutions of the mathematical model of trans-
verse vibrations of a rotating horizontal flexible shaft with a solid disk
proposed in [1] are investigated. It is assumed that the shaft and disc
are homogeneous and perfectly balanced, the axes of the shaft and disc
coincide, the ends of the shaft rest on bearings, the rotation speed is
constant. The disc is mounted on a shaft at some distance from one of
the ends. The shaft material is assumed to be inherently elastic and
subordinate to the nonlinear rheological model of Yu.N.Robotnov [2].
The mathematical model is an initial boundary value problem for a
system of two nonlinear partial differential equations and an infinite
(integral) delay of the argument. The boundary conditions contain
higher time derivatives and nonlinear lagging functionals. The math-
ematical model describes the dynamics of the middle line of a flexible
shaft. For the initial boundary value problem, the concept of a gen-
eralized solution is defined, its existence, uniqueness and continuous
dependence on initial conditions and parameters are proved. The sta-
bility of the zero solution (stable rotation) of the initial boundary
value problem is investigated. In the plane of the main parameters
(rotational velocity and linear coefficient of external friction), using
the D-partition method, the stability (instability) regions of the zero
solution of the initial boundary value problem are constructed. The
possibility of loss of stability of the zero solution is shown, due to the
passage through the imaginary axis of the complex plane of one, two
and three pairs of complex conjugate points of the spectrum of the
characteristic beam of operators. The bifurcations of self-oscillating
solutions in these cases of loss of stability of the zero solution are
investigated. The theory of central manifolds of distributed dynami-
cal systems is used as a research method, which makes it possible to
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reduce the study of bifurcations of self-oscillatory solutions of a dis-
tributed system to solving a similar problem for systems of ordinary
differential equations describing the behavior of trajectories on critical
central manifolds. The possibility of bifurcation of periodic solutions
(direct circular precession), invariant tori (beating modes) and more
complex self-oscillatory solutions is shown. Asymptotic formulas are
constructed for self-oscillating solutions.

This work was carried out within the framework of a development programme

for the Regional Scientific and Educational Mathematical Center of the Yaroslavl

State University with financial support from the Ministry of Science and Higher

Education of the Russian Federation (Agreement on provision of subsidy from the

federal budget No. 075-02-2024-1442).
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EXISTENCE, STABILITY AND NUMBER OF
INVARIANT MANIFOLDS OF A PERIODIC

BOUNDARY VALUE PROBLEM FOR NONLINEAR
FUNCTIONAL PARTIAL DIFFERENTIAL EQUATION

A.N. Kulikov1, D.A. Kulikov2

1 P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
anat kulikov@mail.ru
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We consider a periodic boundary value problem (BVP)

wt = awxx − byx − (y2)x, (1)

w(t, x+ 2π) = w(t, x) (2)

where y = y(t, x) = w(t, x − h), a, b, h are some positive constants.
Nonlinear functional differential equation (1), (2) is one of the variants
of the equation, which in a number of sections physics of boundary
phenomena is called the ”nonlocal erosion equation” [1-3].
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A characteristic feature of BVP (1),(2) is the following:
1) it can be included in the class of abstract parabolic equations;
2) has a one-parameter family of spatially homogeneous equilib-

rium states u(t, x) = α;

3) M0(w) =
1

2π

2π∫
0

w(t, x)dx = α, i.e. spatial the average over the

variable x does not depend on t (can be interpreted as the first BVP
integral).

For BVP (1), (2) it is possible to show the existence of a positive
constant ε0, such that for all ε ∈ (0, ε0) and the corresponding choice
of h the following statements are true:

1) there is a set {αj}, j = 1, . . . ,m(ε0), lim
ε0→∞

m(ε0) = ∞ such

that in the neighborhood of each equilibrium state u(t, x) = αj BVP
(1),(2) has a two-dimensional invariant manifold Vj;

2) each Vj is formed by t periodic solutions of the BVP, for which
asymptotic formulas can be found;

3) let k(ε0) be the number of saddle invariant manifolds Vj. Then
lim
ε0→0

k(ε0) = ∞.

From the ”formal” point of view, BVP (1),(2) has a countable
number of saddle two-dimensional invariant manifolds filled with sad-
dle periodic decisions.

This work was carried out within the framework of a development programme

for the Regional Scientific and Educational Mathematical Center of the Yaroslavl

State University with financial support from the Ministry of Science and Higher

Education of the Russian Federation (Agreement on provision of subsidy from the

federal budget No. 075-02-2024-1442).
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PERIODIC SOLUTIONS OF THE TODA RELAY CHAIN
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Let’s consider a system of nonlinear equations describing the dy-
namics of intercoupled nonlinear oscillators. In general, the system
has the form [1]

Mr̈j = f(rj+1) + f(rj−1)− 2f(rj). (1)

Here rj(t) denotes the position of the j-th spring relative to its equi-
librium length, and the function f characterises the tension force of
the spring.

This type of system was first studied by Morikazu Toda in the
context of investigating the dynamic behaviour of elements in a crystal
lattice. In his works [2,3], he explored solutions to the equation for
f(r) = −α(1 − e−βr). In this paper, we consider f(r) as a piecewise
constant function, defined by the following formula

f(r) =


α, r > 0,

0, r = 0,

−β, r < 0,

(2)

where α and β are positive parameters.
For a system (1) of m + 1 identical oscillators arranged in a ring,

a smooth unstable periodic solution is constructed in the form of a
discrete travelling wave.
This means that all components are represented by the same periodic
function r(t) with a shift multiple of some parameter ∆

rj = r(t+ j∆), j = 0, 1, . . . ,m. (3)
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The technique for constructing such solutions is considered in [4,5].
The geometrical description of the phase trajectories is also described.
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USING PARABOLIC EQUATIONS WITH MODULAR
TYPE NONLINEARITY IN APPLICATIONS

N.T. Levashova

Department of Mathematics, Faculty of Physics, Lomonosov Moscow
State University, 119991 Moscow, Russia;

levashovant@physics.msu.ru

Solutions of the front type of parabolic equations are often used
to model various processes in problems of biophysics, chemical kinet-
ics, sociology and economics. Similar models containing cubic non-
linearity are well known, such as the laminar flame model proposed
by Zeldovich and Frank-Kamenetsky, the FitzHugh-Nagumo model
of excitation propagation in the myocardium. However, solutions of
the front type can also have parabolic equations with the so-called
modular nonlinearity, in particular, equations of the form

∂u

∂t
−D∆u =

{
f−(u,x), u ≤ 0,

f+(u,x), u > 0.
(x, t) ∈ D.

The existence of smooth solutions of the front type for initial-boundary
value problems for similar equations was investigated in [1,2]. Also
in these works, expressions for the front propagation velocity were
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obtained. In [3], conditions for the existence of stationary solutions for
systems of equations containing modular nonlinearity were formulated.

In the case the front propagates in a medium with continuous
sources described by cubic nonlinearity, the occurrence of station-
ary distributions is associated with inhomogeneities of the medium.
However, there are processes in which the unperturbed medium is ho-
mogeneous, and the stationary distribution occurs at the boundary of
the unperturbed medium and the one perturbed by the front passage
through it. Such a situation can arise, for example, in models of com-
bustion or tumor growth. For such problems, the use of models with
modular nonlinearities turns out to be very successful. This study is
devoted to the development of such models.
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ON THE INFLUENCE OF BOUNDARY CONDITION
COEFFICIENTS ON THE DYNAMIC PROPERTIES OF

THE LOGISTIC EQUATION WITH DELAY AND
DIFFUSION

D.O. Loginov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State
University, Russia; dimonl@inbox.ru

We consider the boundary value problem

∂u

∂t
= d

∂2u

∂x2
− r(1− u(x, t))u(x, t− 1), 0 ≤ x ≤ 1, r > 0, d > 0,

(1)
∂u

∂x

∣∣∣∣
x=0

= κu|x=0 ,
∂u

∂x

∣∣∣∣
x=1

= γu|x=1 . (2)
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Note that u(x, t + s) ∈ W 2
2 [0,1] × C[−1,0], where s ∈ [−1, 0]. The

boundary value problem (1), (2) has a clear biological meaning. It
describes, for example, the change in the population size in the case
when through boundaries, migration is possible proportional to the
population density at the corresponding boundary of the habitat. This
migration is determined by the coefficients κ and γ.

It is shown that negative values of the parameter γ and positive
values of κ expand the range of variation of the values of the parameter
r, at which the zero equilibrium state in (1), (2) is stable, and positive
γ and negative κ – narrow.

The limiting values of the parameter r are obtained, at which the
zero equilibrium state is stable.

In cases close to critical and the limiting case, at γ → −∞ and
κ→ ∞, in the problem of stability of the zero solution, an analysis of
the local dynamics of the boundary value problem (1), (2) is given.

This work was supported by the Russian Science Foundation (project No. 21-

71-30011, https://rscf.ru/project/21-71-30011/.

NONLOCALITY, INTEGRABILITY, AND SOLITONS

W.-X. Ma

University of South Florida, USA; wma3@usf.edu

We will explore integrable models that include involution points.
By transforming classical Lax pairs, we create nonlocal integrable
models, which possess infinitely many conservation laws and symme-
tries. Their solitons can be obtained using Darboux transformations
or by solving reflectionless Riemann-Hilbert problems in a nonlocal
context.
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LOCAL DYNAMICS OF A SYSTEM OF THREE
AUTOGENERATORS WITH AN ASYMMETRIC

CONNECTION

E.A. Marushkina

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
marushkina-ea@yandex.ru

Consider a system of three ring-coupled generators with asymmet-
ric nonlinearity:

üj +
d

dt
(εuj + αu2j + u3j) + uj + µ g(uj−1) = 0 , j = 1, 2, 3 , (1)

where u0 = u3, µ > 0, and the sign of the parameters ε and α is
arbitrary. The coupling function g(u) is given by the equality

g(u) = u exp

(
− un

nbn

)
, (2)

where b > 0 is fixed.
For sufficiently small values of ε and µ = νε the local theory applies

to the system (1). For µ = ε = 0 we have the critical case of three
pairs of purely imaginary roots. To find the normal form of the system
(1) standard replacement

uj =
√
µ(zj(τ) exp(it)+z̄j(τ) exp(−it))+µuj2(t, τ)+µ3/2uj3(t, τ)+. . . ,

j = 1, 2, 3, was used. Here zj(τ) — complex-valued of the slow-time
τ = µt functions. From the conditions of solvability of problems for
uj3(t, τ) in the class 2π–periodic by t functions at the third step of the
algorithm, the following normal form is obtained:

z′j = −ν zj
2
+
i

2
zj−1 + dzj|zj|2, j = 1, 2, 3, (3)

where d = −3
2 +

2α2

3 i.
A complete bifurcation analysis is performed for the constructed

normal form. An important role of the nonlinear coupling between
partial systems is shown. The specified result is obtained for the
case α ̸= 0. At sufficiently small values of the parameters ε and
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µ it is shown that the system (1) with a coupling function of the
form (2) has an orbitally asymptotically stable cycle branching from
the equilibrium state. The main difference between the cases of an
asymmetric characteristic of a nonlinear element and the case of α =
0 is that there are no symmetric or self-symmetric attractors. The
dependence of the system’s dynamics on the value of α is analyzed.

Remark. The author is grateful to S. D. Glyzin for problem
statement.

This work was supported by the Russian Science Foundation (project No. 21-

71-30011), https://rscf.ru/en/project/21-71-30011/.
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INVESTIGATION OF LOCAL DYNAMICS IN THE
VICINITY OF THE EQUILIBRIUM STATE OF A
LOGISTIC EQUATION WITH NON-CLASSICAL

BOUNDARY CONDITIONS

IgorN. Maslenikov
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Logistic equation with delay and diffusion:

∂u

∂t
= d

∂2u

∂x2
+ r[1− u(t− T, x)]u, 0 ≤ x ≤ 1 (1)

and with classical boundary conditions

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=1

= 0 (2)

arises in problems of mathematical ecology. In (1) u(t, x) — nor-
malized population size (density), d > 0 — diffusion coefficient (or
mobility of the species), r > 0 — Malthusian coefficient, T > 0 —
time delays that are associated with the age of puberty.

One of the most important questions regarding the model is (1),
(2) is a question about the dynamics of solutions in the neighborhood
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of a single equilibrium state. In this regard , another form of writing
this boundary value problem is usually considered in the form

∂u

∂t
= d

∂2u

∂x2
− ru(t− T, x)[1 + u], (3)

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=1

= 0, (4)

In this paper, the equations (3) is investigated under non-classical
boundary conditions

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=1

= αu(t, x0), 0 ≤ x0 < 1. (5)

These boundary conditions also have a biological meaning: mi-
gration from the area [0, 1] and into it through the right boundary
x = 1 depends on the population density at some intermediate point
x0 ∈ [0, 1). The problem of allocation is posed for fixed d, T and r
in the plane of parameters (x0, α) sets Ω, for elements (x0, d) from
which the zero equilibrium state of the boundary value problem (3),
(5) stable.

The research is based on the use of standard numerical methods.
For this reason, we consider boundary conditions of another type,

”similar” to (5), but differing from (5) in that one boundary condition
involves delay:

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=1

= αu(t− h, x0), 0 ≤ x0 < 1, 0 < h < T. (6)

For the boundary value problem (3), (6), we can use general re-
sults on the existence and uniqueness of solutions. The stability of
both boundary value problems, (3), (5) and (3), (6), was analyzed by
numerical methods.

Here are the main results. Figures 2 show two curves α±(x0) for
d = 0.1, T = 1 and for two different values of the r parameters,
which define the boundaries of the Ω domain. Null solution (3), (5)
for parameters satisfying the conditions

α−(x0) < α < α+(x0) (7)

is stable, and when
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a) b)

c) d)

Fig. 1: The stability area of the zero solution is highlighted in gray (3),
(6). Parameter values: T = 1, r = 1, d = 10−1 and a) h = 10−1,
b) h = 10−2, c) h = 10−3, d) h = 0

α < α−(x0) or α > α+(x0) (8)

unstable.
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a) b)

c) d)

Fig. 2: Domain Ω for parameter values T = 1, r = 1 and a) d = 0.1
b) d = 0.2 c) d = 0.5 d) d = 1

THE BEHAVIOR OF SOLUTIONS TO A
SECOND-ORDER DIFFERENTIAL EQUATION WITH A

DELAYED IMPULSE FEEDBACK

IvanN. Maslenikov

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
ivan.maslenikov.94@mail.ru

Consider a second-order nonlinear differential equation with a de-
lay

ẍ+ σẋ+ x = f(x(t− h)),

where σ > 0 and h > 0. With respect to the nonlinear function f(x),
we assume that it has an impulse type: f(x) = 0, for x ̸= 0 and
b∫

−a

f(x)dx = f0 for any a, b > 0. Let study the behavior of solutions

for fixed values of the parameters σ, f0, h.
Define the class of initial conditions SA, depending on the param-

eter A and consisting of piecewise continuously differentiable func-
tions φ(t) defined on the segment [−h, 0] for which φ(t) ̸= 0 for
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t < 0, φ(0) = 0 and φ̇(0) = A. For each initial function from S(A),
using the step-by-step integration method, we construct the solution
xA(t) and find its first positive root t∗ = t∗(A) : xA(t∗(A)) = 0. If
the condition t∗(A) > h is fulfilled, then xA(t∗(A) + t) ∈ S(A), where
A = p(A) = ẋA(t∗(A)). Thus, the mapping An+1 = p(An) is de-
termined, the dynamics of which describes the behavior of solutions
to the initial differential equation with a delay. The specific type of
display and its properties depend on the parameters σ, f0, h.

The work was carried out as part of the implementation of the program for the

development of the regional Scientific and educational Mathematical Center (YarSU)

with the financial support of the Ministry of Science and Higher Education of the

Russian Federation (Agreement on the provision of subsidies from the federal budget

No. 075-02-2024-1442).
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SUPERSYMMETRIC SOLUTIONS OF THE
ASSOCIATIVE YANG-BAXTER EQUATION

M.G. Matushko
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We propose a trigonometric solution of the associative Yang-Baxter
equation related to the queer Lie superalgebra which in its turn satis-
fies the quantum Yang-Baxter equation.
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ON INFINITE TOWERS OF SYMPLECTIC AND
CONTACT NILMANIFOLDS

D.V. Millionshchikov
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We consider infinite towers of symplectic and contact nilmanifolds
corresponding to narrow infinite-dimensional graded Lie algebras. One
of the most important examples is the tower of nilmanifolds corre-
sponding to the positive part W+ of the Witt algebra W considered
in [1]. Another important example of an infinite chain of nilman-
ifolds can be obtained from the infinite-dimensional Vergne algebra
m0 [2]. Such towers are constructed using the inductive procedure
of successive one-dimensional central extensions of the corresponding
finite-dimensional (nilpotent) Lie algebras. We discuss examples of
nilmanifolds that cannot be included in infinite towers of this type
[3,4].
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QUANTIFICATION AND COMPARISON
OF MAGNETIC AND KINETIC CHAOS

IN TOROIDAL PLASMAS

H.T. Moges1, Y. Antonenas2, G. Anastassiou3, Ch. Skokos4,

Y. Kominis5

1,4Nonlinear Dynamics and Chaos Group, Department of
Mathematics and Applied Mathematics, University of Cape Town,

Rondebosch 7701, South Africa; ht.moges@gmail.com
2,3,4School of Applied Mathematical and Physical Sciences, National

Technical University of Athens, Athens 15780, Greece

The presence of non-axisymmetric perturbations of axisymmetric
toroidal magnetic field results in the chaoticity of the magnetic field
lines and strongly affects the charged particle motion and, therefore,
the particle energy and momentum transport in toroidal plasma [1, 2].
Particle chaoticity is determined by resonance conditions relating the
unperturbed orbital frequencies of the particles with the toroidal and
poloidal numbers of the perturbative modes [3]. The Guiding Cen-
ter (GC) motion [4] of low-energy particles approximately follows the
magnetic field lines so that magnetic and kinetic chaos have similar
characteristics. However, higher-energy particles may undergo large
drifts across the magnetic field lines, and the chaotic characteristics of
their GC motion can be quite different from those of the underlying
magnetic field. Here we present the outcomes of a systematic com-
parison of magnetic and kinetic chaos [4] based on the utilization of
the Smaller Alignment Index (SALI) [5, 6], which is an efficient chaos
detection technique. The efficient quantification of chaos by the SALI
method enables the assignment of a value characterizing the chaoticity
of each orbit in the space of the three constants of the motion, namely,
energy, magnetic moment, and toroidal momentum. In this way, we
construct detailed colour plots, which provide a unique overview of the
different effects of a specific set of perturbations on the entire range
of trapped and passing particles, as well as the radial location of the
chaotic regions. Our approach constitutes a valuable method for the
study of the chaotic behaviour of toroidal fusion devices.
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HYPERBOLIC SYSTEMS: SPECIAL
TRANSFORMATIONS AND EXACT SOLUTIONS

S. S. Mukhina

V.A. Trapeznikov Institute of Control Sciences of Russian Academy
of Sciences, Moscow, Russia; ssmukhina@edu.hse.ru

In this paper we propose a method for constructing exact solutions
of nonlinear hyperbolic systems of two first-order partial differential
equations with two independent variables.

Such systems are represented by a pair of differential 2-forms on
the four-dimensional space R4 with coordinates x1, x2, u1, u2. Here
x1, x2 are independent variables and u1, u2 are unknown functions.

This system defines an almost product structure on the space R4

(see [1]). Let A be a linear operator corresponding to this structure.
If the Nijenhuis bracket of this operator is zero, then the equation is
reduced to the wave system by changing variables [2]. Therefore, it
can be solved exactly.

However, the condition of equality to zero of the Nijenhuis bracket
is often not satisfied and this method does not work.

In the report, we consider exactly this case. The main idea of our
method is as follows.

If the system has a conservation law for which the non-degeneracy
condition is satisfied, then such a system can be written as a single
second-order equation E [1]. According to the results of V.V. Lychagin
[3], this equation can be considered as a differential 2-form on the five-
dimensional space of 1-jets J1(R).
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A.G. Kushner showed (see [4]) that two differential 2-forms λ+, λ−
on this space can be invariantly associated with this equation (he
called them the Laplace forms). These forms are tensor analogues of
the Laplace semi-invariants for linear hyperbolic equations. If these
forms are identically equal to zero, then the equation E is contact
equivalent to the wave equation [4]. The general solution of the wave
equation is known. Applying the inverse transformation to this solu-
tion, we obtain the solution of equation E . Note that this solution may
be multi-valued. Knowing it, we can construct an exact (multi-valued)
solution of the original system.

So, the essence of the method consists in replacing the transforma-
tions of the four-dimensional space with special transformations of a
special five-dimensional space.

We illustrate our method for the Barenblatt system which describes
the process of two-phase filtration (for example, oil and water) in the
presence of surface-active reagents [5]:{

st +Hx = 0,

(cs+ ϕ(1− s) + a)t + (cH + (1−H)ϕ)x = 0.

where s(t, x) is a water saturation, c(t, x) is a relative concentration
of active reagent in water, H(s, c) is the Buckley–Leverett function,
ϕ(c) is a concentration of active reagent in oil, a(c) is a concentration
of active reagent deposited on the pores, t is the time, x is the spatial
variable (the x-axis coincides with the direction of movement of the
fluid). Here independent variables are t, x, unknown functions are s, c.
The functions H,ϕ, a depend on physical properties of the pore space
and chemical properties of active reagent.

The initial system in the four-dimensional space R4(t, x, s, c) can
be represented by a pair of differential 2-forms (see [6])

ω1 = −(Hs(ϕ
′(s− 1)− s− a′) + (ϕ′ − 1)H − ϕ′)Hcχ

−1 dt ∧ dc
+2Hc(ϕ

′(s− 1)− a′ − s)χ−1dx ∧ dc+ dx ∧ ds−Hs dt ∧ ds,
ω2 = Hsdt ∧ ds+Hcdt ∧ dc− dx ∧ ds.

(1)
Here χ = Hs(ϕ

′(s− 1)− s− a′) +H(1− ϕ′) + ϕ′.
Applying the transformation

Φ1 : {q1 = Hst− x, q2 = Hct, p1 = s, p2 = c}
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to forms (1), we get the equation E :

Hp2(µHp1 − η)vq1q2 + µHp2vq2q2
+ (µHp1p1Hp2 +Hp1p2(µHp2 − η))q2(v

2
q1q2

− vq1q1vq2q2) = 0,

where µ = (p1 − 1)ϕ′ − p1 − a′ and η = (ϕ′ − 1)H − ϕ′.
If both Laplace 2-forms are zero, then the corresponding nonlinear

partial differential equation can be reduced to a wave equation using
nonlinear contact transformations. If one Laplace invariant 2-form is
zero and the other form is not, then the equation of the second order
is reduced to a linear one by contact transformations.

Conditions are found under which both Laplace forms vanish. For
such cases, we construct exact solutions of the Barenblatt equation.

The work was supported by the Foundation for the Advancement of Theoretical

Physics and Mathematics ”BASIS” (project No. 23-7-5-52-1).
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TIKHONOV-TYPE SYSTEMS IN THE CASE OF
EXCHANGE OF STABILITIES

N.N. Nefedov

Lomonosov Moscow State University, Moscow, Russia;
nefedov@physics.msu.ru

We consider the problem

ε2∆u− ∂u

∂t
− g(u, v, x, ε) = 0,

∆v − ∂v

∂t
− f(u, v, x, ε) = 0, x ∈ D ⊂ Rn, t ∈ R+,

with corresponding boundary and initial conditions in the case when
the isolation of the roots φ1(v, x) and φ2(k(x), x) of the degenerate
equation is violated on the surface v = k(x):

There is a continuous function k(x): D → R such that φ1(k(x), x) =
φ2(k(x), x) for x ∈ D , and the exchange in stability occurs on the
closed (n-1)-dimensional hypersurface Γ(x) ∈ D, dividing D into outer
D− and inner D+ subdomains with respect to Γ(x).

The composite stable solution is determined. The proof of the
theorem of the existence of the stable stationary solution is proved,
its asymptotic approximation is given.

The results are extended to analogous periodic parabolic boundary
problem in the case of the exchange in stability.

The results presents a further development of the results presented
in the review [1].

The work was supported by the Russian Science Foundation (project No. 23-

11-00069).
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The elliptic lattice KdV system was introduced in [1] as a natural
multi-component generalisation of the lattice potential KdV equation
associated with an elliptic curve. It exhibits many of the expected in-
tegrability features: a Lax representation, multi-soliton solutions and
integrable reductions. However, compared to the usual lattice poten-
tial KdV equation (H1 of the ABS list) it lacks a number of important
features: the Lax matrices no longer factorise, there is no Lagrangian
structure known (so far) and the simplest nontrivial periodic reduc-
tions are already of higher genus (compared to g=1 for the usual case).
Relation to the well-known Q4 or Adler’s equation of [2], or to any
other quadrilateral lattice equations, are yet to be estabished. In the
present note, I will present some novel results on this elliptic lattice
KdV system: a coupled set of multiquadratic equations (in the sense of
[3]), and an associated elliptic Yang-Baxter map. Furthermore, there
is connection with an elliptic lattice AKP system, given in [4], which
is in contrast to the elliptic B type KP system, [5], which first arose
as a byproduct of some lattice systems of B type by Date, Jimbo and
Miwa in 1983.
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2. Adler V.E., “Bäcklund transformation for the Krichever-Novikov equation,”
International Mathematics Research Notices, 1998, Issue 1, 1–4 (1998).

3. Atkinson J., Nieszporski M., “Multi-quadratic quad equations: integrable
cases from a factorized-discriminant hypothesis,” International Mathematics
Research Notices 2014, Issue 15, 4215-4240 (2014).

85



Conference on Integrable Systems & Nonlinear Dynamics ISND-2024

4. Jennings P., Nijhoff F.W., “On an elliptic extension of the Kadomtsev–
Petviashvili equation,” J. Phys. A: Math. Theor., 47, No. 5, 055205 (2014).

5. Fu W., Nijhoff F.W., “On a coupled Kadomtsev–Petviashvili system asso-
ciated with an elliptic curve,” Stud. Appl. Math., 149, Issue 4, 1086–1122
(2022).
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REACTION-DIFFUSION-ADVECTION PROBLEM
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The present work is devoted to the study of a one-dimensional
reaction-advection-diffusion equation with weak smooth advection and
a discontinuous reaction in the spatial coordinate:

Nεu := ε2
∂2u

∂x2
− εa(u, x)

∂u

∂x
− f(u, x)− εf1(u, x) = 0, −1 < x < 1,

f1(u, x) :=

{
f
(+)
1 (u, x), u ∈ Iu, xp < x ≤ 1,

f
(−)
1 (u, x), u ∈ Iu, −1 ≤ x < xp,

f(u, x) :=

{
f (+)(u, x), u ∈ Iu, xp < x ≤ 1,

f (−)(u, x), u ∈ Iu, −1 ≤ x < xp,
∂u

∂x
(−1, ε) = 0,

∂u

∂x
(1, ε) = 0.

(1)
Here ε – a small parameter, 0 < ε < ε0 ≪ 1, xp ∈ (−1; 1), Iu - a
segment of varying of function u(x, ε).

The construction of asymptotics, proof of existence and study of
stability of stationary solutions with the constructed asymptotics, pos-
sessing a weak internal layer, which is formed near the discontinuity
point, are carried out for problem (1). To construct the asymptotics,
the method of Vasilyeva A.B. was used, to justify the existence of the
solution – the asymptotic method of differential inequalities, to study
the stability – the method of contracting barriers. It is shown that
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such a solution as a solution of the corresponding initial-boundary
value problem is asymptotically stable in the sense of Lyapunov. A
stability region of finite (not asymptotically small) width for such a
solution is indicated and it is established that the solution to the sta-
tionary problem is unique in this region.

REFERENCES

1. Levinstein M.E., Pozhela Y.K., Shur M. S., Gunn Effect [in Russian],
Moscow (1975).

2. Nefedov N. N., Nikulin E. I., Orlov A. O., “Existence of Contrast Structures
in a Problem with Discontinuous Reaction and Advection,” Russian Journal
of Mathematical Physics, 29, No. 2, 214–224 (2022).

CORANK-1 SINGULARITIES OF TYPICAL
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We obtain a classification (up to fiberwise diffeomorphism) of corank-
1 singularities of typical real-analytic integrable systems on 4- and
6-dimensional symplectic manifolds. We prove that, near a corank-1
orbit, the Liouville foliation of such a system is diffeomorphic to the
standard model. We also depict phase portraits and their bifurcations
near such singularities, and prove structural stability of these singu-
larities. Our singularities in the 4D case are parabolic orbits with
resonances [2], and bifurcations of such orbits in the 6D case. Let us
proceed with precise statements.

An integrable Hamiltonian system on a 2n-dimensional symplectic
manifold (M,ω) is given by a smooth mapping

F = (f1, . . . , fn) : M −→ Rn,

where {fi, fj} = 0. A singular Lagrangian foliation on (M,ω) arises
whose fibers are connected components of the sets F−1(c), c ∈ R.
Regular compact fibers are Liouville tori. Suppose thatM is compact.
Then the mapping F generates a Hamiltonian Rn-action on M .
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Definition. A semilocal singularity (i.e., a compact Rn–orbit)
of a real-analytic integrable system (M,ω,F) is called structurally
stable if it has a neighborhood UC in MC such that any real-analytic
integrable system (UC, ω̃C, F̃C) sufficiently close to the given system in

UC w.r.t. C∞-topology can be represented as follows: F̃C = ϕC ◦FC ◦
ΦC, where ΦC : UC → MC and ϕ : Cn → Cn are an embedding and a
homeomorphism, resp., close to the identities. If Φ is a diffeomorphism
onto its image, the singularity is called smoothly structurally stable.

Consider the class S = S(M) of integrable systems on M (called
semitoric) for which the functions f2, . . . , fn generate a locally-free
Hamiltonian action of the (n−1)-torus onM [4]. Let O be a corank-1
semilocal singularity, i.e., a compact Rn-orbit such that rk dF(O) =
n− 1.

Definition. We define the standard model (Mst, ωst,Fst) by set-
ting

Mst = (D2 ×Dn−1 × T n−1)/G, ωst = dx ∧ dy +
n−1∑
i=1

dIi ∧ dφi,

Fst(z, I, φ) = (Hs,k,α(I)(z, I
′), I),

where G is a finite cyclic subgroup of SO(2), Hs,k,α(I)(x, y, I
′) =

H(x, y, I1, . . . , Ik) is a smooth G-invariant function of variables z =
(x, y) ∈ D2 and parameters I = (I1, . . . , In−1) ∈ Dn−1,
φ = (φ1, . . . , φn−1) ∈ T n−1, s = |G| ∈ N, 1 ≤ k < n ≤ 3, and the
action of the group G on the direct product has the form (x, y, I, φ) 7→
(x cos(2πℓ/s) − y sin(2πℓ/s), x sin(2πℓ/s) + y cos(2πℓ/s), I,
φ1 + 2π/s, φ2, . . . , φn−1), 0 ≤ ℓ < s, (ℓ, s) = 1. Here α(I) is a smooth
function.

Thus, the standard model is the semitoric integrable system
(Mst, ωst,Fst) with a Hamiltonian (R × T n−1)-action and a compact
(n − 1)-dimensional orbit O given by x = y = I1 = · · · = In−1 = 0

having multipliers e±
2πℓi
s = ξ±ℓ (with ξ = e2πi/s), twisting resonance

ℓ/s mod 1 (see [3]) and resonance order s = |G|.
For any s ∈ N, consider the cyclic group G ⊂ SO(2) of order s, see

above, the G-invariant Morse functions Hs,0 = H±,±
s,0 (x, y) = ±|z|2 =

±(x2 + y2) and Hs,0 = H+,−
s,0 (x, y) = x2 − y2 (for s = 1, 2 only), and
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two families of Zs-invariant functions Hs,k,α(z, ε), k = 1, 2:

Hs,1,α(z, ε) =


±x2 + ys+2 +εys, s = 1, 2,
Re(z3) +ε|z|2, s = 3,
Re(z4) + α|z|4 +ε|z|2, s = 4, α2 ̸= 1,
Re(zs) + |z|4 +ε|z|2, s ≥ 5,

Hs,2,α(z, ε) =


±x2 + y2s+2 +ε2y

2s + ε1y
s, s = 1, 2,

Re(z4)± |z|4 + |z|6 +ε2|z|4 + ε1|z|2, s = 4,
Re(z5) + |z|6 +ε2|z|4 + ε1|z|2, s = 5,
Re(z6) + α|z|6 + |z|8 +ε2|z|4 + ε1|z|2, s = 6, α2 ̸= 1,
Re(zs) + |z|6 + α|z|8 +ε2|z|4 + ε1|z|2, s ≥ 7.

Here z = x + iy, ε = (εi) ∈ Rk is a small parameter, α ∈ R is a
parameter called modulus.

Theorem 1 ([5]). Let n = 1
2 dimM ∈ {2, 3} and Sst ⊆ S

denote the class of systems all of whose local singularities are fiber-
wise diffeomorphic to standard ones. Then Sst is open and dense in S
with respect to the C∞-topology. Furthermore, any singularity that is
fiberwise diffeomorphic to the standard model, in which the modulus
is present (respectively, absent), is structurally stable (respectively,
smoothly structurally stable) with respect to small real-analytic inte-
grable perturbations.

Remark. Theorem 1 describes parabolic trajectories with reso-
nances [2] for n = 2, and their generic bifurcations for n = 3.

Theorem 1 does not follow from the classification in [1].
Remark. The classification of corank-2 singularities of typical

integrable Hamiltonian systems with three degrees of freedom was
recently obtained by E.A. Kudryavtseva and L.M. Lerman in [6], and
we aim to prove structural stability of these singularities (and thereby
extend Theorem 1 to such singularities).

The author is grateful to E.A. Kudryavtseva for posing the problem and valuable

discussions. The author is a stipendiat of the Theoretical Physics and Mathematics

Advancement Foundation “BASIS”.
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EXISTENCE AND STABILITY OF STATIONARY
SOLUTIONS WITH BOUNDARY LAYER IN A

TWO-DIMENSIONAL SYSTEM OF FAST AND SLOW
REACTION-DIFFUSION-ADVECTION EQUATIONS

WITH KPZ NONLINEARITIES

A.O. Orlov

Lomonosov Moscow State University, Moscow, Russia;
orlov.andrey@physics.msu.ru

We consider a system of fast and slow reaction-diffusion-advection
equations with KPZ nonlinearities:

Nu(u, v) := ε2∆u− ε2A(u, x) (∇u)2 − g(u, v, x, ε) = 0, x = (x1, x2) ∈ D,

Nv(u, v) := ∆v −B(v, x) (∇v)2 − f(u, v, x, ε) = 0,
(1)

Here D is a simply connected area on the plane (x1, x2) with a smooth
simple boundary Γ, ε is a small parameter lying in the range (0; ε0] , ε0 >
0.

PDE equations with nonlinearities involving the scalar square of
the unknown function gradient (known as Kardar–Parisi–Zhang (KPZ)
nonlinearities) arise in various applications: population dynamics, free
surface growth in polymer theory, nonlinear theory of thermal conduc-
tivity.

For this problem, conditions are obtained under which solutions
with a boundary layer are Lyapunov stable. The asymptotic method of
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differential inequalities is used to prove the existence and stability the-
orems. The boundary layer asymptotics of solutions are constructed
in the case of Neumann and Dirichlet boundary conditions. The case
of quasimonotone sources and systems without the quasimonotonicity
requirement is also considered.

The author was supported by the Russian Foundation for Basic Research (project

no. 23-11-00069).
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BI-HAMILTONIAN STRUCTURES OF
DUBROVIN–NOVIKOV TYPE

M.V. Pavlov

Lebedev Physical Institute of Russian Academy of Sciences, Moscow,
Russia; mpavlov@itp.ac.ru

In this talk we consider a classification of bi-Hamiltonian struc-
tures of Dubrovin–Novikov type based on a number of common flat
coordinates. Also we present a list of most remarkable integrable hy-
drodynamic type systems, equipped by such pairs of local Hamiltonian
structures.
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IS CLASSICAL INTEGRABLE SYSTEM A BIT
QUANTUM?

A.K. Pogrebkov

Steklov Mathematical Institute of the Russian Academy of Sciences,
Moscow, Russia; pogreb@mi-ras.ru

Existence of such quantum effects as creation/annihilation of par-
ticles and dark energy is proved to arise in the study of known models
of classical mechanics, such as the Calogero–Moser and Ruijsenaars–
Schneider systems.
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PARAMETERS ESTIMATION IN THE TRAFFIC FLOW
MODEL

M.A. Pogrebnyak

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
pogrebnyakmaksim@mail.ru

This study develops an extension of the leader-follower mathemat-
ical model, which describes the movement of N ∈ N vehicles, offering
a modified and improved version of the model proposed in [1,2]. In
the original model, each vehicle n follows the movement of the vehicle
immediately ahead, n−1. However, in this paper, the n-th vehicle not
only considers the movement of the n− 1 vehicle but also forecasts its
behavior by taking into account the movement of the vehicle two po-
sitions ahead, n− 2. The n-th vehicle then adapts its own movement
based on this forecast, meaning that the driver’s behavior is influenced
by both their own actions and the actions of the vehicle that is two
vehicles ahead.

Vehicles with numbers n = 1 and n = 2 cannot forecast the move-
ment of other vehicles as there are no vehicles ahead of them. Conse-
quently, they move according to the model proposed in [1,2].
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Let yk(t), where k = n−1, n > 2, denote the position of the bumper
of the predicted vehicle at time t. Then, ẏk(t) and ÿk(t) represent its
speed and acceleration, respectively.

Since the movement of the n− 1 vehicle is predicted, the driver of
the n-th vehicle receives information about its behavior without delay,
unlike the case where the driver simply watches the vehicle ahead and
receives data with a time delay τ .

Thus, the model considering the predicted dynamics of the leading
vehicle takes the following form:

ẍ1(t) =R1 [a1 (vmax,1 − ẋ1(t))]− (1−R1)H1,

ẍ2(t) =R2 [a2 (P2 − ẋ2(t))]− (1−R2)H2,

ÿk(t) =R̂k

[
ak

(
P̂k − ẏk(t)

)]
− (1− R̂k)Ĥk,

ẍn(t) =R̃n

[
an

(
P̃n − ẋn(t)

)]
− (1− R̃n)H̃n,

xn(t) = yk(t) = λn, ẋn(t) = ẏk(t) = vn, for t ∈ [−τ, 0].

The relay functions R̂k and R̃n of system are as follows:

R̂k =

{
1, if xk−1(t− τ)− yk(t) > (τ + τb)ẏk(t) + ẏ2k(t)/2µg + lk,

0, if xk−1(t− τ)− yk(t) ≤ (τ + τb)ẏk(t) + ẏ2k(t)/2µg + lk,

and

R̃n =

{
1, if yn−1(t)− xn(t) > (τ + τb)ẋn(t) + ẋ2n(t)/2µg + ln,

0, if yn−1(t)− xn(t) ≤ (τ + τb)ẋn(t) + ẋ2n(t)/2µg + ln,

respectively.
The logistic function P̂k is given by:

P̂k =
vmax,k − V̂k

1 + exp[kk(−(xk−1(t− τ)− yk(t)) + Ŝk)]
+ V̂k,

where V̂k = min (ẋk−1(t− τ), vmax,k), and the parameter Ŝk of the
logistic curve is:

Ŝk = (τ + tb)ẏk(t) + ẏ2k(t)/2µg + lk + τ(ẋk−1(t− τ)− ẏk(t)).

The logistic function P̃n is given by:

P̃n =
vmax,n − Ṽn

1 + exp[kn(−(yn−1(t)− xn(t)) + S̃n)]
+ Ṽn,
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where Ṽn = min (ẏn−1(t), vmax,n), and S̃n is:

S̃n = (τ + tb)ẋn(t) + ẋ2n(t)/2µg + ln + τ(ẏn−1(t)− ẋn(t)).

The Heaviside functions Ĥk and H̃n of the system are:

Ĥk =


qk

(
ẏk(t)

∆̂ẏk

∆̂yk − lk

)2

, if qk

(
ẏk(t)

∆̂ẏk

∆̂yk − lk

)2

≤ µg,

µg, if qk

(
ẏk(t)

∆̂ẏk

∆̂yk − lk

)2

> µg,

where ∆̂ẏk = ẋk−1(t− τ)− ẏk(t) and ∆̂yk = xk−1(t− τ)− yk(t), and

H̃n =


qn

(
ẋn(t)

∆̃ẋn

∆̃xn − ln

)2

, if qn

(
ẋn(t)

∆̃ẋn
∆xn − ln

)2

≤ µg,

µg, if qn

(
ẋn(t)

∆̃ẋn

∆̃xn − ln

)2

> µg,

where ∆̃ẋn = ẏn−1(t)− ẋn(t) and ∆̃xn = yn−1(t)− xn(t).
This work was supported by the Russian Science Foundation (project No. 21-

71-30011), https://rscf.ru/en/project/21-71-30011/
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AN UNSTABLE CYCLE WITH A “SHORT” PERIOD
IN ONE RELAY DIFFERENTIAL EQUATION

WITH DELAY

M.M. Preobrazhenskaia1, I. E. Preobrazhenskii2

1 Centre of Integrable Systems, Yaroslavl State University, Yaroslavl,
Russia; rita.preo@gmail.com

1 Centre of Integrable Systems, Yaroslavl State University, Yaroslavl,
Russia; preobrazenskii@gmail.com

Considering the relay version [1] of the generalized Hutchinson
equation [2]

u̇ = λF (u(t− 1))u. (1)

Here, the scalar function u(t) > 0 represents the normalized membrane
potential, λ > 0 is the speed of electrical processes in the nerve cell,

F (u)
def
=

{
1, 0 < u ≤ 1,
−a, u > 1.

After the exponential substitution u = eλx, equation (1) takes the
form of a difference-differential equation

ẋ = R(x(t− 1)) (2)

with a piecewise constant right side, where

R(x)
def
=

{
1, x ≤ 0,
−a, x > 0.

In work [2], equation (2) was considered with a negative continuous
initial function; it was proven an existence and orbital stability of a
periodic solution

x0(t)
def
=

 t, t ∈ [0, 1],
−a(t− t0), t ∈ [1, t0 + 1],
t− T0, t ∈ [t0 + 1, T0],

x0(t+ T0) ≡ x0(t), (3)

where
t0

def
= (a+ 1)/a, T0

def
= (a+ 1)2/a,

The period T0 is longer than the delay 1.
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In this work, all possible solutions with continuous initial functions
that contain an arbitrary number of roots over the delay length interval
are constructed. It is proven that there exists a value of the roots of the
initial function for which the equation has a periodic unstable solution
with a period shorter than the delay. Moreover, all such solutions are
homothetic to solution (3). In cases where the zeros of the initial
function are chosen differently or there are fewer than two, the regime
(3) is established.

The work of M. M. Preobrazhenskaia was supported by the Russian Science

Foundation grant No. 22-11-00209, https://rscf.ru/project/22-11-00209/. The work

of I. E. Preobrazhenskii was carried out within the framework of the implementation

of the development program of the regional scientific and educational mathematical

center (YarSU) with financial support from the Ministry of Science and Higher

Education of the Russian Federation (Agreement on the provision of subsidies from

the federal budget No. 075-02-2024-1442).
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PERIODIC SOLUTIONS OF A SINGLE DIFFERENTIAL
EQUATION

WITH THREE DELAYS FROM NEURODYNAMICS

M.M. Preobrazhenskaia1, I. V. Teplyashin2

1Centre of Integrable Systems, Yaroslavl State University,
Yaroslavl, Russia; rita.preo@gmail.com

2Centre of Integrable Systems, Yaroslavl State University,
Yaroslavl, Russia; ivan.teplyashin97@gmail.com

The paper considers a model of a ring chain of neurons, the func-
tioning of each of which is described by an equation with two delays.
This equation was studied in articles [1,2]. The model under study
is a modification of the one considered in [3], where the single-delay
equation, the generalized Hutchinson equation, lies as a model of a
solitary neuron [4]. As in [3], we construct discrete traveling waves.
This means that we are looking for a periodic solution to the system,
such that all components coincide with the same function, shifted by
a multiple of a certain parameter. To find this solution, an auxiliary
differential-difference equation of the Volterra type with three delays
is investigated. For this equation, the existence of a stable periodic
solution containing any predetermined number of bursts per period
(bursting effect in the sense of definition [1]) is established.
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ON THE CARDAN MOTION IN AN EXTENDED
HYPERBOLIC PLANE

L.N. Romakina

Saratov State University, Saratov, Russia; romakinaln@mail.ru

In kinematics, the Cardan motion is defined as the motion of a
plane α with respect to a coinciding plane β such that two points A
and B of α move along two orthogonal lines l, m of β (see, for instance,
[1, Section 2.3] or [2]). In Euclidean geometry, an arbitrary point of
the plane α traces in general an ellipse during a Cardan motion (see [1,
Theorem 2.3.1]). In particular, the midpoint of the moving segment
AB describes a circle. The paper [3] of O.Bottema is most likely the
first step in studying of the Cardan motion in non-Euclidean geometry.
In [3] it is proved that, in general, in an elliptic plane the path of an
arbitrary point of the generating line AB during the Cardan motion
is a quartic curve.

We study this motion in an extended hyperbolic plane H2, the
connected components of which are the Lobachevskii plane λ2 and
the hyperbolic plane Ĥ of positive curvature adjacent to Λ2 along the
absolute oval curve γ. In the plane H2, for a pair of two orthogonal
lines, there are three possible cases. The lines l and m can belong to a
hyperbolic, elliptic, or parabolic pencil of lines. In paper [4], the paths
of an arbitrary point of the generating line AB during Cardan motion
are investigated in H2 under the condition that lines l and m belong
to a hyperbolic pencil. In particular, the paths of the midpoint of the
segment AB are studied in detail (such curves were called Svetlana
ribbons).

In the upcoming report, we plan to present a study of the Cardan
motion in H2, provided that the lines l and m belong to an elliptic or
parabolic pencil. In particular, we will establish a connection between
the paths of points in the Cardan motion and the remarkable curves
of the Minkowski plane.
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HOMOCLINIC ORBITS IN MATRIX NLS-TYPE
SYSTEMS

V.M. Rothos

Department of Mechanical Engineering, Faculty of Engineering
Aristotle University of Thessaloniki GR54124 Thessaloniki, Greece;

rothos@auth.gr

We consider a system of coupled nonlinear Schrödinger equations
with even, periodic boundary conditions, which are damped and quasi-
periodically forced. Under certain conditions, we establish criteria for
the existence of homoclinic orbits to a spatially independent invariant
torus. We compare the analysis with rigorous numerical simulation.
In the second part of the talk, we describe the full-time dynamics of
modulational instability in F = 1 spinor Bose–Einstein condensates
for the case of the integrable three-component model associated with
the matrix nonlinear Schrödinger equation. We obtain an exact homo-
clinic solution of this model by employing the dressing method which
we generalize to the case of the higher-rank projectors.
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ON SINGULARITIES OF CAUSTICS IN SPACES OF
DIMENSION n ≤ 5

Vyacheslav D. Sedykh

National University of Oil and Gas “Gubkin University”,
Moscow, Russia; vdsedykh@gmail.com

Caustic is the set of critical values of a Lagrangian map. A germ
of a Lagrangian map is a germ of a sweep of a gradient mapping.
By Arnold’s theorem on Lagrangian singularities, simple stable La-
grangian germs are defined by versal deformations of germs of smooth
functions at critical points of types A,D,E. Multisingularity of a La-
grangian map at a point of the target space is the unordered set of
singularities of the mapping at the preimages of this point. We will
talk about the adjacencies of multisingularities of a generic Lagrangian
map into a space of dimension n ≤ 5.

GEOMETRIC ANATOMY OF THE NONWANDERING
CONTINUUM POSSESSING WADA PROPERTY

D.W. Serow

National Centre for Dynamic System Research RAS,
188300 Gatchina, Russia; dimusum@yandex.ru

Recently, I have researched and then announced the topological
classification of the Birkhoff curves and the nonwandering continua
possessing Wada property. At the same time, I made a fundamental
mistake by allowing the existence of more than the only fixed point
belonging to the Birkhoff curve.

Theorem 1 Birkhoff curve contains the only fixed point.

K. Kuratowski (1928) proved that an indecomposable continuum cut-
ting a plane into two regions turns out to be monostratic (monostra-
tique) [1]. Therefore, the Birkhoff curve has the only fixed point with
an index being equal to zero. It is simple.
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So that, the Birkhoff curve is consisted to be nonwandering inde-
composable continuum turning out to be two invariant regions bound-
ary with respect to dynamic system acting on the plane. The Birkhoff
curve geometric model has been constructed based on the Knaster
example indecomposable continuum having two composants [2] as fol-
lows

(a) (b)

Fig. 1: (a) Knaster’s continuum havitg two composants from [2]
(b) monostratic indecomposable continuum turns out to

be two regions common boundary

Endpoints (0, 0) and (0, 1) of the Knaster’s continuum are glued by
the formula

(y − 7/20)e2πx 7→ x+ iy.

Now, on the assumption of the principle of constructing the Birkhoff
curve geometric model, geometric models of the nonwandering con-
tinua turning out to be three regions common boundary have been
constructed as follows:

fit the first, — the indecomposable continuum having four composants
has been constructed
fit the second, — now the endpoints in pairs have been glued

The continua in Fig. 3 turn out to be three regions common bound-
ary. Moreover, these constructions turn out to be more adapted to
dynamic systems (compare with the examples from [3]) than the well-
known Brower and Wada examples.
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Fig. 2: Indecomposable continuum having four composants

Fig. 3: There exist only two ways to glue the endpoints
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ON REVERSION OF THE ABEL–PRYM MAP AND ITS
APPLICATIONS TO INTEGRABLE SYSTEMS

O.K. Sheinman

Steklov Mathematical Institute, Moscow, Russia;
sheinman@mi-ras.ru

Abel map transfoms a certain symmetric power of a Riemann sur-
face to an Abelian variety called Jacobian of the Riemann surface. In
the theory of integrable systems Abel map appeared as early as in
K.Jacobi ”Lectures on Dynamics”. In frame of the method of Sep-
aration of Variables, the phase space of the system exfoliates into
symmetric products of curves. If the curves are algebraic and equal,
the Abel map transforms that foliation into the Lagrangian foliation of
the system. It is wellknown that the trajectories of integrable systems
are straight line windings of the Lagrangian tori (the fibers of the last
foliation). To get trajectories explicitly, in the original separation co-
ordinates, we need to reverse the Abel map. This problem is known as
Jacobi inversion problem. Its solution is classical for Jacobians. How-
ever, for majority of classical and new integrable systems Lagrangian
tori are not Jacobians but different Abelian varieties called Prym va-
rieties, or Prymians. In general, no analog of Jacobi inversion can be
formulated for Prymians. We hilight the case when the last neverthe-
less is possible. As application, we obtain solutions to the Hitchin sys-
tem with the structure group SO(4) on a genus 2 curve in Prym theta
functions (the most recent result is from 2002, by Krichever, in the
GL(n) case; the previous results are due to Gawedzki and Tran-Ngoc-
Bich’98, van Geemen and Previato’94 in the SL(2) case; to the best of
our knowledge, no exact solution for orthogonal case was known). By
means of general arguments we obtain a solution in genus 2 theta func-
tions to the Kowalevski system. There is also a geometric outcome of
our considerations, namely we represent the corresponding Prymians
as symmetric powers of certain curves, up to birational equivalence.
For an approach to the reversion of the Abel–Prym map in a different
set-up see [2].
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INERTIA TENSOR OF A RIGID BODY IN
PSEUDO-EUCLIDEAN SPACE

A.Yu. Shubert

Moscow State University, Moscow, Russia;
anastasiia.shubert@math.msu.ru

The report will explore the connection between the following me-
chanical problems:

• the problem of the rotation of a rigid body around a fixed point
(i.e., a spinning top) in a 3-dimensional (pseudo-)Euclidean space,

• the problem of the motion of a rigid body (referred to as a
“plate”) in a 2-dimensional space of constant curvature, specifi-
cally, on a 2-dimensional sphere, a Euclidean plane, or a Lobac-
hevsky plane.

The inertia tensor of the rigid body from mechanics will be examined.
We will describe its connection with the kinetic energy of the rigid
body and the inertia tensor on the Lie algebras so(3) and so(2, 1)
in terms of a natural isomorphism between this Lie algebra and the
ambient (pseudo-)Euclidean space. We will compute the inertia tensor
of any single-point body in terms of the (pseudo-)Euclidean metric of
the ambient space. As a consequence, firstly, it follows that the value of
the inertia tensor (as a quadratic form) on any time-like vector is non-
negative. In particular, the inertia tensor cannot have a signature of
(−,−,−). Secondly, for any “plate” on the Lobachevsky plane (lying
within the light cone), the inertia tensor is positive definite. Thirdly,
we will provide specific examples of two-point bodies lying outside the
light cone, whose inertia tensor can have any signature other than
(−,−,−).
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ENERGY TRANSPORT AND CHAOS
IN A ONE-DIMENSIONAL DISORDERED

NONLINEAR STUB LATTICE

Ch. Skokos
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Cape Town Rondebosch, 7701, Cape Town, South Africa;
haris.skokos@gmail.com, haris.skokos@uct.ac.za

We numerically study the dynamics of initially localized excita-
tions in a one-dimensional stub lattice model in the presence of dis-
order and nonlinearity. The model’s piece wise frequency spectrum
is comprised by a near flat band and two non-flat spectra separated
by distinct gaps when the disorder strength is below some threshold
value. We theoretically predict and numerically observe three differ-
ent dynamical regimes induced by chaos, namely the weak and strong
chaos spreading regimes, and the self-trapping regime. Our numerical
simulations show subdiffusive spreading for relatively large disorder
strengths for both the weak and strong chaos regimes, which are char-
acterized by specific exponents in the power law increase of the wave
packets’ second moment evolution in time. The system’s chaoticity
is quantified through numerical computations of the finite time maxi-
mum Lyapunov exponent, which is diminishing to zero following power
law decays. Our findings show that the presence of frequency gaps
does not have any significant effect on the wave packet spreading in
the weak chaos regime, while they remain rather inconclusive for the
strong chaos case, indicating the need for further investigations.
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NEW TYPES OF SOLUTIONS TO THE VECTOR
DERIVATIVE NLS EQUATION

A.O. Smirnov1, A. I. Belyousov2, M.M. Prikhodko3

1St.-Petersburg State University of Aerospace Instrumentation,
St.-Petersburg, Russia; alsmir@guap.ru

2St.-Petersburg State University of Aerospace Instrumentation,
St.-Petersburg, Russia; alex8elks@yandex.ru

3St.-Petersburg State University of Aerospace Instrumentation,
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In our work we consider the following equations

i∂zp− ∂2tp+ 2i(pt∂tq)p− 2(ptq)2p = 0,

i∂zq+ ∂2t q+ 2i(qt∂tp)q+ 2(ptq)2q = 0,

where pt = (p1, p2, p3), q
t = (q1, q2, q3).

The corresponding Lax pair has the following form

iΨt = UΨ, iΨz = V2Ψ,

where U = −λ2J + λQ+R, V2 = λ2U + λV 0
1 + V 0

2 ,

J =
1

4

(
3 0t

0 −I

)
, Q =

(
0 pt

q 0

)
, R =

(
−ptq 0t

0 qpt

)
,

V 0
1 =

(
0 Ht

1

G1 0

)
, V 0

2 =

(
−f1 0t

0 F1

)
,

I is identity matrix, H1 = −i∂tp, G1 = −i∂tq,

F1 = i
(
∂tqp

t − q∂tp
t
)
−
(
qpt
)2
, f1 = TrF1.

In this case, the multiphase solutions correspond to non-hyperelliptic
spectral curves Γ = {(µ, λ)} of the following form:

µ4 + A(λ)µ2 +B(λ)µ+ C(λ) = 0,

where

A(λ) = −3

8
λ2n+4 +

n+2∑
k=1

Akλ
2n+4−2k, B(λ) =

1

8
λ3n+6 +

∑
k≥1

Bkλ
3n+6−2k,

C(λ) = − 3

256
λ4n+8 +

∑
k≥1

Ckλ
4n+8−2k.
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Since the genus of this curve is quite large already at n = 1, some
solutions to the considered equation have unusual behavior.

To construct these solutions, we use spherical coordinates:

p1 = |p|eiα1 sin θ cosϕ, q1 = σp∗1,

p2 = |p|eiα1 sin θ sinϕ, q2 = σp∗2,

p3 = |p|eiα1 cos θ, q3 = σp∗3,

where σ = ±1.
In case n = 1, the length of the vector p is an elliptic function

u(t − kz), and the angles θ and ϕ depend on the length. For some
parameter values, the direction of the vector p is fixed, only its length
changes. However, there are also solutions when the vector p has a
constant length, only its direction changes. Note that in the case of
a two-component vector p (see [1]), there were no nontrivial solutions
with constant length. Naturally, there are also solutions where the
direction of the vector p does not trivially depend on its variable
length.

The research was supported by the Russian Science Foundation (grant agree-

ment No 22-11-00196).
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DECOMPOSITION OF LIE ALGEBRA INTO SUM OF
TWO SUBALGEBRAS AND INTEGRABILITY

V.V. Sokolov

Higher School of Modern Mathematics MIPT;
vsokolov1952@gmail.com

Let g be a Lie algebra with a basis ei, i = 1, . . . , n. Suppose we
have a vector space decomposition

g = g+ ⊕ g−, (1)

where g+ and g− are subalgebras in g.
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Let us consider the following non-linear system of ODEs

dU

dt
= [π+(U), U ], U(0) = U0. (2)

Here

U(t) =
n∑
1

ui(t) ei,

and π+ denotes the projector onto g+ parallel to g−.
Proposition 1 (Adler-Kostant-Symes scheme). The solution of

the Cauchy problem (2) is given by the formula

U(t) = A(t)U0A
−1(t), (3)

where the function A(t) is defined as the solution of the following
factorization problem:

A−1B = exp (−U0 t), A ∈ G+, B ∈ G−. (4)

Here G+ and G− are the Lie groups of the algebras g+ and g−, respec-
tively.

The formula

[x, y]R = 1/2 ([Rx, y] + [x,Ry]) (5)

defines a second structure of Lie algebra on the vector space g. Here
R = π+−π− is the difference of projectors on g+ and g−, respectively.

The operator R is the simplest example of the so called R-matrix.
In general, the R-matrix is a linear operator R : g 7→ g that satisfy
the modified Yang–Baxter equation

R
(
[y,R(x)]− [x,R(y)]

)
+ [R(x), R(y)] + [x, y] = 0,

where x, y ∈ g.
Let g = gln, U =

∑
ui,jeij.

Lemma. Equation (2) is Hamiltonian with the Poisson bracket
{·, ·}R, where R = π+ − π−, and Hamiltonian H = traceU 2.

Despite the fact that the formula (3) gives an explicit solution
of the equation modulo the factorization problem (4), the question
of whether the equation is integrable in the classical sense and in
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particular whether it has the required number of integrals in involution
in the general case remains open. In the case of decompositions

gln = n+ ⊕ b−

and
gln = so⊕ b

the equation is bi-Hamiltonian, which ensures its integrability.

ON LOCALLY-FREE-COMPACTIFIED MODULI OF
VECTOR BUNDLES ON A HIGHER-DIMENSIONAL

VARIETY

N.V. Timofeeva

Centre of Integrable Systems, Yaroslavl State University,
Yaroslavl, Russia; ntimofeeva@list.ru

In my talk I will discuss the construction of the moduli scheme for
semistable admissible pairs for arbitrary dimension. We start from a
nonsingular projective algebraic variety S. The final result is an iso-
morphism between the moduli scheme of Gieseker-semistable torsion-
free coherent sheaves of rank r and with Hilbert polynomial rp(n)
on the varity S with a fixed polarization L and the moduli scheme
of semistable admissible pairs ((S̃, L̃), Ẽ). Each such pair consists of

an admissible scheme S̃ with a distinguished polarization L̃ and a
semistable locally free sheaf Ẽ of rank r and with Hilbert polynomial
rp(n). In particular, this provides a compactification of the mod-
uli space of stable vector bundles by vector bundles on some special
(admissible) schemes instead of the classical compactification by at-
taching non-locally free coherent sheaves. I will describe the notion of
stability (semistability) for pairs ((S̃, L̃), Ẽ) ([1]) and develop a func-
torial approach to the construction of their moduli. This construction
generalizes analogous results for the two-dimensional case ([2]).

The basement for the subject of interest is the Kobayashi–Hitchin
correspondence. It allows one to apply algebraic geometrical methods
to problems of differential geometrical or gauge theoretical setting by
transferring consideration of the moduli of connections in a vector
bundle (including vector bundles endowed with additional structures)
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to consideration of the moduli for vector bundles which are slope-
stable. The compactification constructed is conceived as a tool for
extending of the Kobayashi–Hitchin correspondence to the compact
case.

This work was carried out within the framework of a development program for

the Regional Scientific and Educational Mathematical Center of the P.G. Demidov

Yaroslavl State University with financial support from the Ministry of Science and

Higher Education of the Russian Federation (Agreement on provision of subsidy

from the federal budget No. 075-02-2024-1442).
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BYLLYARD DYNAMICS AS A SOURCE OF STONE’S
LOGIC GENERALIZATION

S.A. Titarenko

Saint Petersburg Chamber of Trade and Commerce, Saint
Petersburg, Russia; titarenko.sa@gmail.com

Quantum billiard is a dynamics system created by a particle which
moves within a domain Ω and is reflected from the wall ∂Ω like a
billiard ball. Wavefunctions ψn of this free particle are computed from
Schroedinger’s equation which is the spectral problem for Laplacian
−∆ψn = Enψn, ψn |∂Ω= 0. The eigenvalues En are proportional to
admissible energy levels of the particle and form the spectrum of the
billiard Spec(Ω) = {0 < E1 < E2 ≤ . . .}.

In 1990s there was discovered a very challenging effect in math-
ematical physics. Namely, there were found first examples of non-
isometric billiards Ω ̸≈ Ω̃ with the same spectra which coincide as
countable sets En = Ẽn, n = 1, 2, . . .. [1] contains a whole gallery of
such examples; a review of construction methods for these examples
was made in [2]. This paper was the first step for the author in many
years’ development of general ”isospectry method” which was recently
finished (see complete proofs in [3]) and is summarized in the following
statement:
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Realization theorem [T., 2020]. There exist only 2 realizations

of isospectrality Spec(Ω) = Spec(Ω̃): I) isometry Ω ≈ Ω̃; II) multi-

valued isometry T: then Ω and Ω̃ = TΩ are m-cellular with the same
cell Φ and all cellular subdomains ω ⊂ Ω generate new isospectral
billiards:

ω = T−1Tω ⇔ Spec(ω) = Spec(Tω) (1)

Cellular billiards are constructed by mirror reflections of the same
connected cell Φ over line segments on its boundary ∂Φ. The case II
covers all non-isometric billiards with the same energy spectra: both
the known billiards and not yet found ones and excludes any other non-
trivial ways to realize isospectrality. One may choose arbitrary sub-
domains α ⊂ Ω to create continuum of new isospectral non-isometric
billiards T−1Tα ⊂ Ω and Tα ⊂ Ω̃. 2-cellular isospectral billiards
are domains with an axis of symmetry so they may be only isometric
ones as the case II requires the same cell for them. This case confirms
our approach as it agrees with spectral rigidity of axis-symmetrical
domains proved in [4] using absolutely different approach.

(1) is valid for all cellular subdomains ω ⊂ Ω. Now we declare
any arbitrary subsets ω ⊂ Ω satisfying (1) as cellular and isospec-

tral to Tω ⊂ Ω̃ by definition and denote the set of all such subsets as
S. All intersections, complements and unions of such subsets also be-
long to S due to the pure geometric condition for cellular subdomains
ω = T−1Tω in (1). Then a topology emerges acc. to the following
rule: a set ω is open if it is isospectral (1) to its image Tω, i.e. if
they both are cellular ones. This extremally disconnected topol-
ogy is well-known, S is the algebra of all its open-closed subsets with
the unity Ω and plays the key role in the following principal Stone’s
theorem [5]:

Theorem [Stone, 1933] Any complete Boolean algebra is iso-
morphic to Stone’s algebra S of all open-closed subsets of extremally
disconnected compact.

Then subsetsTα ⊂ Ω̃ may be treated as representations of subsets-
statements α ⊂ Ω and one can produce the table of Stone’s repre-
sentation of logical operations as operations with subsets Tα ⊂ Ω̃:

statement: α → Tα
conjunction: α1 ∧ α2 → Tα1 ∩Tα2

disjunction: α1 ∨ α2 → Tα1 ∪Tα2

negation A : Aα → Ω̃\Tα
Stone’s representation gives logical correctness to the wave-particle
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duality of the quantum theory and presents models for dialectic tran-
sition of quantity into quality and unity and struggle of opposites. We
calculate here Stone’s representation for double negationDα using the
formula above for negation Aα:

Dα → Ω\(T−1Aα) = T−1Tα (2)

The equality α = Dα = T−1Tα means acc. to (1) that α ∈ S and it
is a cellular subset so generalized inclusion holds:

α ⊆ Dα, (3)

where ”=” corresponds to the law of excluded middle.
Another confirmation of our theory is the fact that the formula (3)

is well-known in mathematical logics. Here is citation from a paper
of a Moscow algebraist Kabakov F.A. (1972, his doctoral advisor was
S.P.Novikov): “In the language of statement logics the double negation
law is expressed with the formula

¬¬p ⊃ p (4)

and is usually used in lists of logical axioms”.
(3) and (4) are obviously the same with different notation α ↔

p,D ↔ ¬¬, but (4) is an axiom and (3) on the contrary is a strict
consequence derived from the quantum theory and Stone’s theorem!
So one can conclude that this Stone’s logic generalization which looks
so brightly in quantum theory is valid for all applications of Laplacian
in other physical branches and promises fruitful perspectives.
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ASYMPTOTIC BEHAVIOR OF REGULAR
AND IRREGULAR SOLUTIONS
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A periodic boundary value problem is considered for a modified
Camassa–Holm equation, which differs from the well-known classical
equation by several additional quadratic terms. Three important con-
ditions on the coefficients of the equation are formulated under which
the original equation has the Camassa–Holm type. The dynamic prop-
erties of regular solutions in neighborhoods of all equilibrium states
are investigated. Special nonlinear boundary value problems are con-
structed to determine the “leading” components of solutions. Asymp-
totic formulas for the set of periodic solutions and finite-dimensional
tori are obtained. The problem of infinite-dimensional tori is stud-
ied. It is shown that the normalized equation in this problem can be
compactly written in the form of a partial differential equation only
for the classical Camassa–Holm equation. An asymptotic analysis is
presented in the cases when one of the coefficients in the linear part
of the equation is sufficiently small, while the period in the boundary
conditions is sufficiently large.

This work was supported by the Russian Science Foundation (project no. 21-

71-30011). https://rscf.ru/en/project/21-71-30011/
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LIOUVILLE FOLIATION OF INTEGRABLE BILLIARD
BOOKS AT THE FOCAL LEVEL

V.V. Vedyushkina
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Let us fix a family of confocal quadrics by the relation

(b− λ)x2 + (a− λ)y2 = (b− λ)(a− λ).

Here a, b are fixed parameters of the family, which in particular fix
the distance between the foci. If a > b > 0, this relation describes a
family of confocal ellipses and hyperbolas, which include the focal line
y = 0 and the limit hyperbola x = 0.

A billiard bounded by arcs of confocal quadrics is integrable [1].
For each trajectory, all its links tangent to the fixed ellipse or hyper-
bola from the same confocal family as the billiard boundary. Thus,
the parameter Λ of this confocal quadric acts as an integral of the
system. Let us separately select the focal level Λ = b at which the
links of the trajectories lie on the lines passing through the foci.

Let us consider the foliation of this integrable Hamiltonian system
on a three-dimensional surface of constant energy. Such a foliation can
be effectively described by Fomenko-Zieschang invariants [2], which
was previously done by V. Dragovic, M. Radnovic and the speaker.
However, if we generalize the class of integrable billiards by including
so-called billiard books, then the class of different foliations (that is,
the corresponding different invariants) is significantly expanded.

A billiard book is a two-dimensional CW-complex, the two-dimen-
sional cells of which are parts of a plane bounded by arcs of confo-
cal quadrics, and some cyclic permutations are assigned to the one-
dimensional cells. A material point moving along a two-dimensional
cell after reflection from a one-dimensional cell continues moving along
the sheet to which the corresponding permutation points. By adding
some natural conditions on the commutation of permutations in zero-
dimensional cells, we obtain a completely integrable Hamiltonian sys-
tem.

How can we describe the three-dimensional neighborhood of the
focal level Λ = b for a billiard book? It turns out that the following
two results are true in this case.
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For any non-degenerate three-dimensional atom (bifurcation of the
foliation on the isoenergy surface of an arbitrary integrable Hamilto-
nian system) there exists a billiard book whose foliation on this layer
coincides layerwise with the foliation of the given three-dimensional
atom [3]. The trajectories of such a billiard book do not pass through
the foci.

Theorem 1. Let the trajectory of an arbitrary billiard book passes
through the foci. Then the neigborhood of the connected part of
the corresponding singular fiber is described by an atom belonging
to one of the three series of symmetric atoms Xn, Yn, A

∗...∗ (see the
descriptions of the series in the book [2]).

The work was supported by the grant of the Russian Science Foundation (project

no. 22-71-10106) at Lomonosov Moscow State University.
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PERIODIC INTERNAL TRANSITION LAYERS IN THE
REACTION-DIFFUSION PROBLEM IN THE CASE OF

A WEAK REACTION DISCONTINUITY
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One of the actual problems of the theory of singular perturbations
is the study of nonlinear singularly perturbed partial differential equa-
tions, the solutions of which have boundary or internal layers. Such
equations are of great interest both in the qualitative theory of differ-
ential equations and in many practical applications. In particular, in
mathematical models of chemical kinetics, synergetics, nonlinear wave
theory, biophysics and other fields of physics, where the processes un-
der study are described by nonlinear parabolic equations with small
parameters at derivatives. Solutions to such problems may contain
narrow areas of fast parameter change: boundary or internal transi-
tion layers (contrast structures) of various types – stationary or moving
fronts [1].

Reaction-diffusion and reaction-diffusion-advection equations are
also intensively studied due to the fact that they act as mathematical
models that reveal the main mechanisms that determine the behavior
of more complex physical systems. In particular, the system of equa-
tions of the drift-diffusion model of a semiconductor with an N-shaped
dependence of the drift velocity on the electric field strength can be
reduced to the problem posed and considered below.

The reason for the transition layers (contrasting structures) ap-
pearance in singularly perturbed reaction-diffusion-advection models
can be the fulfillment of the reaction balance condition at some point
or on some curve lying in the field of consideration or advection bal-
ance, as well as the gap of coefficients by spatial coordinate [2–5].

In the works [2, 3] for the case of continuous coefficients, the so-
called critical case was considered when the reaction balance condition
is fulfilled identically, i.e. at any point in the domain. In this paper,
we consider a periodic in time boundary value problem for a nonlinear
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singularly perturbed reaction-diffusion equation in the critical case in
the presence of a weak discontinuity of the reactive term. By weak
discontinuity is meant a discontinuity of the first kind at some point,
which the function of sources undergoes in the first order with respect
to a small parameter.

The following problem is considered:

Nεu := ε2
(
∂2u

∂x2
− ∂u

∂t

)
− f(u, x, t)− εf1(u, x, t) = 0, (x, t) ∈ D,

D = { (x, t) ∈ R2 : x ∈ (−1, 1), t ∈ R },

f1(u, x, t) :=

{
f
(+)
1 (u, x, t), u ∈ Iu, x > xp, t ∈ R,
f
(−)
1 (u, x, t), u ∈ Iu, x < xp, t ∈ R,

∂u

∂x
(−1, t, ε) = 0,

∂u

∂x
(1, t, ε) = 0, t ∈ R,

u(x, t, ε) = u(x, t+ T, ε), x ∈ [−1, 1], t ∈ R.
(1)

Here 0 < ε < ε0 ≪ 1 – small parameter, xp ∈ (−1; 1), Iu - the

change segment of the function u(x, ε). Functions f , f
(±)
1 are quite

smooth and T-periodic in t and lim
x→xp+0

f
(+)
1 (u, x, t) ̸= lim

x→xp−0
f
(−)
1 (u, x, t)),

u ∈ Iu, t ∈ R.
For this singularly perturbed reaction-diffusion equation the solu-

tion with periodic in time internal transition layer is investigated in
the case of a balanced reaction with a weak discontinuity. It is shown
that in the case of the balanced reaction, the presence of even a weak
(asymptotically small) reaction discontinue can lead to the formation
of different finite size contrast structures, which may be stable or un-
stable.

The conditions under which there is a periodic in time solution of
contrast structure type having an internal transition layer localized in
the vicinity of the reaction break point are formulated. The existence
of periodic solutions with an internal transition layer (contrast struc-
tures) is proved, the question of their stability is investigated, and an
asymptotic approximation with respect to a small parameter of this
solutions is constructed. Sufficient conditions are formulated that de-
termine either the asymptotic Lyapunov stability or the instability of
each such solution.

The asymptotic approximation is constructed according to the
method [6]; the asymptotic method of differential inequalities is used
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to prove the existence of the solution [7], as well as the asymptotic
method of differential inequalities developed for problems with dis-
continuous nonlinearities [4, 5]; the study of stability is carried out by
the method of compressible barriers [2].

The authors were supported by the Russian Science Foundation (project no. 23-

11-00069).
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As a model of one neuron, the following equation is considered:

v̇ = λ(fβ(v(t− h)) + g(u∗λ(t)))v, (1)

where v(t) is the normalized membrane potential, h > 0 is the time
delay and λ ≫ 1 is the speed of electrical processes in the nerve cell.
Function fβ(v), g(u) ∈ C∞ satisfy the conditions

fβ(0) = 1, lim
u→+∞

fβ(u) = −β, g(0) = −η, lim
u→+∞

g(u) = ξ.

The function u∗λ(t) = eλx
∗
λ(t) is T ∗

λ -periodic and satisfies the conditions:

lim
λ→+∞

max
t

|x∗λ(t)− x∗(t)| = 0, lim
λ→+∞

T ∗
λ = T ∗,

x∗(t)
def
=

 t, t ∈ [0, 1],
−α(t− t∗), t ∈ [1, t∗ + 1],
t− T ∗, t ∈ [t∗ + 1, T ∗],

x∗(t+ T ∗) = x∗(t), t∗ = (α + 1)/α, T ∗ = (α + 1)2/α.

Here, β, η, ξ, α are positive parameters.
Equation (1) is a modification of the equation

u̇ = λf(u(t− h))u, (2)

proposed in the article [2]. Where u = u(t) ≥ 0, λ ≫ 1, function
f(x) is infinitely differentiable on R+ = {x ∈ R : x ≥ 0} such that
f(0) = 1, f(x) → −α as x→ +∞. This equation underlies a number
of phenomenological neuromodels.

In the work [1], the existence of solutions close to the damped neuro
oscillator mode for equation (1) was analytically proved. Solutions of
this type initially exhibit any predetermined number of exponentially
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high spikes, followed by a gradual attenuation of the spikes and the
establishment of exponentially small oscillations.

In this work, the results of numerical experiments are presented,
during which a new regime of neuro-oscillator behavior, termed the
resurgent regime, was discovered. The essence of the resurgent regime
is as follows. Over an interval proportional to the large parameter, the
solution is asymptotically close to that of the fading neuro-oscillator
type. Subsequently, the solution becomes close to a periodic one with
a bursting effect.

This work was carried out within the framework of a development programme

for the Regional Scientific and Educational Mathematical Center of the Yaroslavl

State University with financial support from the Ministry of Science and Higher

Education of the Russian Federation (Agreement on provision of subsidy from the

federal budget No. 075-02-2024-1442).
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Consider a system of differential equations of neutral type{
ẋ+ x = α · sign(ẋ(t− T )) + γ(y − x),

ẏ + y = α · sign(ẏ(t− T )) + γ(x− y),
(1)

where α < 0, T > 0, γ ⩾ 0, with the initial condition{
ẋ(t) > 0, t ∈ [−T, 0], x(0) = h1,

ẏ(t) > 0, t ∈ [−T, 0], y(0) = h2.
(2)

For γ = 0, system (1) consists of two independent differential equa-
tions of the same form, the solutions of which were studied in [1].

Theorem 1. For h1 = h2 = h∗ = α
1− eT

1 + eT
∈ (−|α|, |α|) solution of

system (1) with initial condition (2) is synchronized (i.e. x(t) = y(t))
and periodic, and if

h1, h2 ∈ (−|α|, |α|),
h1 < h2,

min(h1, h2) >
α + γmax(h1, h2)

1 + γ
,

max(h1, h2) <
min(h1, h2)(1 + 2γ − e2γT )− 2αe2γT

1 + 2γ + e2γT
.

then corresponding solution approaches this synchronized and periodic
solution.

Now consider the initial conditions
ẋ > 0 at t ∈ [−T,−θT ],
ẋ < 0 at t ∈ [−θT, 0],
ẏ > 0 at t ∈ [−T, 0],
x(0) = h1, y(0) = h2,

(3)

121



Conference on Integrable Systems & Nonlinear Dynamics ISND-2024

where θ ∈ [0, 1] is the desynchronization parameter. The case θ = 0
corresponds to the case of synchronization (x(t) = y(t)), the case θ = 1
corresponds to the case of antisynchronization (x(t) = −y(t)).

Theorem 2. There are unique h∗1, h
∗
2 such that if h1 = h∗1, h2 = h∗2

and

e−T

(
h1 + h2

2
− α

)
−e−T (1+2γ)(1+2γ)

h1 − h2
2

−αe−T (1+2γ)θ+αe−Tθ > 0,

(4)
then the solution to equation (1) with the initial condition (3) is pe-
riodic. Moreover, this periodic solution is stable, and for the initial
condition (3) with h1 and h2 sufficiently close to h∗1 and h

∗
2, all solutions

tend exponentially to this periodic solution.
From the analysis of inequality (4) it follows that for small T and

γ desynchronized periodic solutions coexist for any values of desyn-
chronization θ; As T and γ increase, some modes become impossible,
and only modes close to synchronized or antisynchronized remain.
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Radiation dynamics of a closed chain of lasers with optoelectronic
delayed coupling is analyzed. We consider a chain with unidirectional
coupling, bidirectional coupling without feedback, diffusion-like cou-
pling. Assuming that the number of lasers is sufficiently large, we pro-
pose the phenomenological spatially distributed models. The coupling
level is determined at which the stationary state of laser generation be-
comes unstable. A two-dimensional complex partial differential equa-
tion of the Ginzburg-Landau type is derived as a quasi-normal form.
Based on its simplest solution we describe radiation oscillations which
can be phase synchronized, anti-phase or in-phase in dependence on
time delay.

2This work was carried out within the framework of the Russian Science Foun-

dation (project No.21-71-30011, https://rscf.ru/en/project/21-71-30011/).
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