О некоторых свойствах типа нормальности

Научный руководитель – Комбаров Анатолий Петрович

Богомолов Алексей Владимирович

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра общей топологии и геометрии, Москва, Россия

E-mail: a.v.boqomolov94@yandex.ru

Топологическое пространство (X,τ) называется равномерно нормальным, если система $\mathcal U$ всех окрестностей диагонали $\Delta\subset X\times X$ образует равномерность на X. При этом $\mathcal U$ индуцирует исходную топологию τ . Окрестность диагонали — любое симметричное множество, внутренность которого содержит Δ . Равномерная нормальность является усилением свойства нормальности.

Корсон [3] доказал, что Σ -произведение полных сепарабельных метрических пространств равномерно нормально. Комбаровым [1] было доказано, что Σ -произведение полных по Чеху линделефовых пространств счетной тесноты равномерно нормально. Более общей является

Теорема 1. Σ -произведение перистых линделефовых пространств счетной тесноты равномерно нормально.

Топологическое пространство называется napahopmaльным [5], если для любой счётной дискретной системы замкнутых множеств $\{D_n:n<\omega\}$ найдется локально конечная система открытых множеств $\{U_n:n<\omega\}$ такая, что для всех $n<\omega$ выполняется $D_n\subset U_n$ и $D_m\cap U_n\neq\emptyset$ тогда и только тогда, когда $D_n=D_m$. Все нормальные и все счетно паракомпактные пространства являются паранормальными.

Следующая теорема аналогична классической теореме Даукера.

Теорема 2. Пространство X счетно паракомпактно в том и только в том случае, когда произведение $X \times I$ пространства X на отрезок I паранормально.

Следующие теоремы характеризуют счетную паракомпактность в классе секвенциальных пространств и в классе пространств счетной тесноты.

Теорема 3. Секвенциальное пространство X счетно паракомпактно в том и только в том случае, когда произведение $X \times Y$ пространства X на любое счетно компактное пространство Y паранормально.

Теорема 4. Счетной тесноты пространство X счетно паракомпактно в том u только в том случае, когда произведение $X \times Y$ пространства X на любое ω -ограниченное пространство Y паранормально.

Хорошо известна теорема Стоуна [6] о том, что несчетное произведение экземпляров натурального ряда N не является нормальным пространством. Нагами [4] доказал, что несчетное произведение экземпляров натурального ряда не счетно паракомпактно. Одновременным обобщением является

Теорема 5. Несчетное произведение экземпляров натурального ряда N не является паранормальным пространством.

Источники и литература

1) Комбаров А. П. О произведении нормальных пространств. Равномерности на Σ -произведениях // Докл. АН СССР. 1972. т. 205 № 5. с. 1033–1035.

- 2) Комбаров А. П. Об одной теореме А. Стоуна // Докл. АН СССР. 1983. № 270. с. 38–40
- 3) Corson H. H. Normality in subsets of product spaces // Amer. J. Math. 1959. v. 81 N_2 3. c. 785–796.
- 4) Nagami K. Countable paracompactness of inverse limits and products // Fund. Math. 1972. $\mathbb{N}^{\underline{0}}$ 73. p. 261–270.
- 5) Nyikos P. Problem Section: Problem B // Top. Proc. 1984. № 9. p. 367–367.
- 6) Stone A. H. Paracompactness and product spaces // Bull. Amer. Math. Soc. 1948. \mathbb{N} 54. p. 977–982.