Секция «Математическая логика, алгебра и теория чисел»

Граф ортогональности алгебры седенионов

Научный руководитель – Гутерман Александр Эмилевич

Жилина Светлана Александровна

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей алгебры, Москва, Россия E-mail: zhilina0sveta@gmail.com

Пусть \mathcal{A} — алгебра, $Z^*(\mathcal{A})$ — множество нетривиальных двусторонних делителей нуля в \mathcal{A} . Особый интерес для изучения представляют графы ортогональности различных алгебр, в частности, неассоциативных. Они определяются следующим образом ([1]):

Графом ортогональности $\Gamma_O(\mathcal{A})$ алгебры \mathcal{A} называют граф, множеством вершин которого является $Z^*(\mathcal{A})$, причём две различные вершины a и b соединены ребром, если и только если ab = ba = 0.

Введём также обозначения: \mathbb{O} — алгебра октонионов с порождающими $\{1,e_1,\ldots,e_7\}$, \mathbb{S} — алгебра седенионов с порождающими $\{1,e_1,\ldots,e_{15}\}$.

В [2] описаны все делители нуля $\mathbb S$ вида $\pm e_i \pm e_j$ и доказано, что для них всегда выполнено $i \in \{1, 2, \dots, 7\}, j \in \{9, 10, \dots, 15\}.$

В [3] показано, что для $a, b \in \mathbb{S}$ из ab = 0 следует ba = 0. Кроме того, описаны необходимые и достаточные условия ортогональности элементов в \mathbb{S} .

В рамках данной работы получена следующая теорема:

Теорема 1. Диаметр каждой компоненты связности $\Gamma_O(\mathbb{S})$ равен 3. Обхват $\Gamma_O(\mathbb{S})$ равен 4.

Доказательство этой теоремы основано на следующем результате:

Лемма 1. Пусть $(a+be_8)(c+de_8)=0$, где $a+be_8, c+de_8\neq 0$, $n(a+be_8)=n(c+de_8)=\sqrt{2}$, $a,b,c,d\in\mathbb{O}$. Тогда существует автоморфизм \mathbb{O} , при котором

$$e_1 \mapsto a, e_2 \mapsto c, e_4 \mapsto b, e_7 \mapsto d.$$

При дополнительном условии, что $e_8\mapsto e_8$, этот автоморфизм $\mathbb O$ порождает единственный автоморфизм $\mathbb S$, причём

$$e_1 + e_{12} \mapsto a + be_8, e_2 + e_{15} \mapsto c + de_8.$$

Работа выполнена при поддержке гранта РНФ № 17-11-01124.

Источники и литература

- 1) Б. Р. Бахадлы, А. Э. Гутерман, О. В. Маркова, *Графы, определенные ортогональностью* // Численные методы и вопросы организации вычислений. XXVII, Зап. научн. сем. ПОМИ, 428, ПОМИ, СПб., 2014, 49–80; J. Math. Sci. (N. Y.), 207:5 (2015), 698–717
- 2) Raoul E. Cawagas, On the structure and zero divisors of the Cayley-Dickson sedenion algebra // Discussiones Mathematicae. General Algebra and Applications. 24 (2004), 251-265.
- 3) K. Imaeda, M. Imaeda, Sedenions: Algebra and Analysis // Applied Mathematics and Computations, Vol. 115, No. 2-3, 2000, pp. 77-88.