Секция «Математическая логика, алгебра и теория чисел»

О некоторых свойствах матричных мажоризаций

Научный руководитель – Гутерман Александр Эмилевич

Штейнер Павел Михайлович

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Москва, Россия E-mail: pashteiner@ya.ru

Доклад основан на результатах совместной работы с А.Э. Гутерманом и Г. Далем

Пусть $M_{n,m}$ — пространство действительных матриц размера $n \times m$ (пишем M_n при m=n). Для вектора $x \in \mathbb{R}^n$ обозначим через $x_{[j]}$ его j-ю по невозрастанию координату.

Определение 1. Пусть x, v — вектора из \mathbb{R}^n . Говорим, что v мажсорирует $x, x \leq v$ (или $v \succeq x$), если $\sum_{j=1}^k x_{[j]} \leq \sum_{j=1}^k v_{[j]}$ для $k=1,\ldots,n,$ и при k=n достигается равенство.

Определение 2. Различные типы мажоризаций матриц определяются следующим образом (см. [1], [2]):

- Слабая мажоризация: $A \leq^w B$, если существует такая строчно-стохастическая матрица $X \in M_n$, что A = XB.
- Мажоризация по направлению: $A \leq^d B$, если $Ax \leq Bx$ для любого $x \in \mathbb{R}^m$.
- Сильная мажоризация: $A \leq^s B$, если существует такая двояко-стохастическая матрица $X \in M_n$, что A = XB.

Теорема 1. Пусть $A, B \in M_n$, и B обратима. Тогда $A \preceq^d B \Leftrightarrow A \preceq^s B$. Если, кроме того, $e^t A = e^t B$, где $e - \epsilon$ вектор, все координаты которого равны 1, то $A \preceq^w B \Leftrightarrow A \preceq^s B$.

Теорема 2. Пусть A, B — матрицы размера $n \times m$ с коэффициентами из множества $\{0,1\}$. Тогда справедливы следующие критерии мажоризации:

- 1) $A \leq^w B \Leftrightarrow$ множество различных строк матрицы A лежит в множестве различных строк матрицы B.
- 2) $A \preceq^s B \Leftrightarrow A \preceq^d B \Leftrightarrow A = PB$, где P некоторая перестановочная матрица.

Работа выполнена при финансовой поддержке гранта РНФ-16-11-10075.

Источники и литература

- 1) A.W. Marshall, I.Olkin, B.C. Arnold. Inequalities: Theory of Majorization and Its Applications, Second Edition. Springer, New York, 2011.
- 2) F. D. Martínez Pería, Pedro G.Massey and Luis E.Silvestre. Weak matrix majorization. Linear Algebra Appl. 2005. No. 403. pp. 343–368.