Синтез и ренгенографическое исследование $Sn_{0.5}Sn_xTi_{2-x}(PO_4)_3$ Кициловская Наталья Алексеевна, Митяев Александр Сергеевич.

Студент, аспирант Химический факультет МГУ им М.В.Ломоносова, 119992 Ленинские горы, Москва E-mail: Noise9@yandex.ru

В ходе работы синтезированы и охарактеризованы методом порошковой рентгеновской дифракции соединения состава $Sn_{0.5}Sn_xTi_{2-x}(PO_4)_3$ (x=0-2, $\delta=0.25$) обладающие структурой NASICON. Важной особенностью соединений с подобной структурой является высокая подвижность катионов одной из подрешёток. Поэтому такие соединения относят к перспективным твёрдым электролитам.

Синтез соединений состава $Sn_{0.5}Sn_xTi_{2-x}(PO_4)_3$ проводили отжигом стехиометрической смеси SnO_5 , SnO_2 , TiO_2 и $(NH_4)_2HPO_4$ или $NH_4H_2PO_4$, сначала на воздухе в течении 25 часов при температуре $230^{\circ}C_5$, а далее в вакуумированной запаянной кварцевой ампуле при $800^{\circ}C$ в течение 62,5 часов.

Фазовый анализ показал, что все полученные образцы содержат фазы со структурой NASICON, а также некоторое количество примесных фаз: $Ti(Sn)O_2$, $Ti(Sn)P_2O_7$, $Sn_2P_2O_7$. Индицирование NASICON-овых фаз показало, что параметр c гексагональной ячейки сильно изменяется (22.575(5) Å для x=0-23.1440(12) Å для x=2) в зависимости от степени замещения Ti^{+4} на Sn^{+4} , в то время как зависимость параметра a слабо выражена (8.3379(20) Å для x=0-8.3396(5) Å для x=2).