Аспекты получения α -Ca₃(PO₄)₂ для создания биоматериалов на его основе ¹ Ларионов Дмитрий Сергеевич², Кузнецов Александр Викторович

Студент 1 курса

Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах, Москва, Россия

E-mail: dmiselar@gmail.com

Кость является сложноорганизованным композиционным материалом «фосфаты кальция-коллаген» (представленные главным образом гидроксиапатитом $Ca_{10}(PO_4)_6(OH)_2$, ГАП). Материалы на основе фосфатов кальция находят широкое применение в медицине из-за их подобия кости по химическому составу. Поиск материалов для замены поврежденной костной ткани - важная медикоматериаловедческая задача.

Основные типы биоматериалов в ортопедии - цементы и керамика. Цементы – это порошкообразные материалы, образующие при смешении с водой пластичную массу, затвердевающую со временем в прочное камневидное тело. Предложено множество цементных смесей на основе фосфатов кальция, только трикальциевый фосфат $Ca_3(PO_4)_2$ может быть использован в качестве индивидуального компонента. α - $Ca_3(PO_4)_2$ (α - $TK\Phi$) близок по составу кости (Ca/P=1.5), при его гидролизе в водном растворе образуется резорбируемый нестехиометричный ГАП. Применение данного фосфата ограничено сложностью синтеза (часто получается примесь низкотемпературной модификации β - $TK\Phi$) и противоречивостью информации о его гидролизе.

В данной работе ТКФ получали по реакциям взаимодействия карбоната кальция с пирофосфатом или гидрофосфатом аммония при температуре 1200-1300°C:

$$CaCO_3 + Ca_2P_2O_7 = Ca_3(PO_4)_2 + CO_2 \uparrow$$
 (1)

$$3CaCO_3 + 2(NH_4)_2HPO_4 = Ca_3(PO_4)_2 + 3CO_2\uparrow + 4NH_3\uparrow + 3H_2O\uparrow$$
 (2)

При этом варьировали соотношение Са/Р в исходной смеси реагентов.

В работе использовали как коммерческий реагент $Ca_2P_2O_7$, так и полученный в реакции разложения брушита ($CaHPO_4\cdot 2H_2O$) при 500 °C. При этом изучали влияние чистоты $CaCO_3$ («х.ч.» и «ос.ч.») на соотношение α/β -ТКФ в получаемом порошке. При использовании «х.ч.»- $CaCO_3$ было изучено влияние закалки образцов.

Для воспроизводимого получения больших количеств α -ТКФ использовали стабилизацию высокотемпературной фазы частичным замещением PO_4^{3} -групп SiO_4^{4-} :

$$(1+1.5x)$$
CaCO₃ + x SiO₂ + $(1-0.5x)$ Ca₂P₂O₇ = α -Ca_{3+0.5x}(PO₄)_{2-x}(SiO₄)_x + $(1+1.5x)$ CO₂↑ (3)

При этом было достигнуто воспроизводимое получение однофазного α -ТКФ в количестве от 20 г за раз без применения закалки.

_

¹ Тезисы доклады основаны на материалах исследований, проведенных в рамках гранта Российского Фонда Фундаментальных Исследований (грант № 05-03-32768).

² Автор выражает признательность ассистенту, к.х.н. Вересову А.Г. за помощь в подготовке тезисов.